K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

29 tháng 6 2020

a, Xét \(\Delta BHK\) \(\Delta BAD\) có :

\(\widehat{B_2}=\widehat{B_1}\left(gt\right)\)

\(\widehat{BHK}=\widehat{BAD}=90^o\)

\(\Rightarrow\) \(\Delta BHK\sim\Delta BAD\left(g.g\right)\)

Xét \(\Delta BAK\) \(\Delta BCD\) có :

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

\(\widehat{BAK}=\widehat{BCD}\) ( cùng phụ với \(\widehat{ABC}\) )

\(\Rightarrow\) \(\Delta BAK\sim\Delta BCD\left(g.g\right)\)

b, Ta có : \(\Delta BHK\sim\Delta BAD\) ( câu a )

\(\Rightarrow\) \(\frac{HK}{AD}=\frac{HB}{BA}\)

Mà BK là phân giác \(\widehat{ABH}\)

\(\Rightarrow\) \(\frac{HB}{BA}=\frac{HK}{AK}\)

\(\Rightarrow\) \(\frac{HK}{AD}=\frac{HK}{AK}\) \(\Rightarrow\) \(AD=AK\)

Lại có : \(\Delta BAK\sim\Delta BCD\) ( câu a )

\(\Rightarrow\) \(\frac{AK}{CD}=\frac{BK}{BD}\)

\(\frac{BK}{BD}=\frac{HK}{AD}\left(\Delta BHK\sim\Delta BAD\right)\)

\(\Rightarrow\) \(\frac{AK}{CD}=\frac{HK}{AD}\)

\(\Rightarrow\) \(AK.AD=HK.DC\) Mặt khác : AD = AK
\(\Rightarrow\) \(AK^2=HK.DC\)

13 tháng 2 2018

1, a, 

Xét tam giác BHK và BAD có 

góc BAD=BHK ( =90độ )

BAD=HBK ( vì BD là pg)

=> hai tam giác đồng dạng theo th góc-góc

13 tháng 2 2018

tiếp câu a nk, 

Xét tam giác BAK và BCD có

ABK=DBC (cmt)

BAK=BAC ( vì cùng phụ với ABC)

=> hai t/g đồng dạng theo góc-góc

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABC\(\sim\)ΔHBA

b: Xét ΔCAI vuông tại A và ΔCHK vuông tại H có

\(\widehat{ACI}=\widehat{HCK}\)

Do đó: ΔCAI\(\sim\)ΔCHK

SUy ra: CA/CH=CI/CK

hay \(CA\cdot CK=CI\cdot CH\)