K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=căn 9^2+12^2=15cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=15/7

=>BD=45/7cm; CD=60/7cm

AH=9*12/15=108/15=7,2cm

b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có

góc HCA=góc MAE

=>ΔHAC đồng dạng với ΔMEA

a: BC=căn 6^2+8^2=10cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=10/7

=>BD=30/7cm; CD=40/7cm

b: AH=6*8/10=4,8cm

a: Xet ΔABC vuông tại A và ΔHAC vuông tạiH có

góc ACB chung

=>ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

b: AE/HE=CA/CH

BD/AD=CB/CA

mà CA/CH=CB/CA

nên AE/HE=BD/AD

=>AE*AD=HE*BD

26 tháng 5 2021

Dài lắm bạn tham khảo.undefinedundefined

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Vậy: BC=15cm

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

b: Xét ΔAHD vuông tại H và ΔCED vuông tại E có

\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)

Do đó: ΔAHD~ΔCED
=>\(\dfrac{AH}{CE}=\dfrac{DA}{DC}\)

=>\(AH\cdot DC=CE\cdot AD\)

c: Ta có: ΔAHD~ΔCED

=>\(\dfrac{DA}{DC}=\dfrac{DH}{DE}\)

=>\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)

Xét ΔDAC và ΔDHE có

\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)

\(\widehat{ADC}=\widehat{HDE}\)(hai góc đối đỉnh)

Do đó: ΔDAC~ΔDHE

d: Xét ΔCAF có

AE,CH là các đường cao

AE cắt CH tại D

Do đó: D là trực tâm của ΔCAF

=>DF\(\perp\)AC

mà AB\(\perp\)AC

nên DF//AB

Xét ΔHDF vuông tại H và ΔHBA vuông tại H có

HD=HB

\(\widehat{HDF}=\widehat{HBA}\)(hai góc so le trong, DF//AB)

Do đó: ΔHDF=ΔHBA

=>HF=HA

=>H là trung điểm của AF

Xét tứ giác ABFD có

H là trung điểm chung của AF và BD

=>ABFD là hình bình hành

Hình bình hành ABFD có AF\(\perp\)BD

nên ABFD là hình thoi

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc HBA chung

=>ΔHBA đồng dạng với ΔABC

b; Xét ΔABE vuông tại A và ΔACB vuông tại A có

góc ABE=góc ACB

=>ΔABE đồng dạng với ΔACB

=>AB/AC=AE/AB

=>AB^2=AE*AC

c: Xét ΔBHD vuông tại H và ΔBAE vuông tại A có

góc HBD=góc ABE

=>ΔBHD đồng dạng với ΔBAE

a: BC=10cm

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\)

Do đó: ΔHAB∼ΔHCA

4 tháng 3 2022

Cảm ơn bạn rất nhìu😘