Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dunhj định lý Py-ta-go vào tam giác vuông ABC ta có:
AB2 + AC2 = BC2
\(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)
\(\Leftrightarrow\)\(BC=\sqrt{25}=5\)
b) Xét tam giác ABM và tam giác CDM có:
BM = DM (gt)
góc AMB = góc CMD (dđ)
MA = MC (gt)
suy ra: tam giác ABM = tam giác CDM (c.g.c)
suy ra: góc BAM = góc DCM = 900
suy ra: DC vuông góc với AC
a: BC=căn 3^2+4^2=5cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB//CD
=>CD vuông góc CA
c: CM=1/2CA=2cm
Xét ΔCBD có
CM,BN là trung tuyến
CM cắt BN tại H
=>H là trọng tâm
=>CH=2/3CM=2/3*2=4/3(cm)
d: Xét ΔDBC có
DKlà trung tuyến
H là trọng tâm
=>D,K,H thẳng hàng
a,Có BC^2=5^2=25
AB^2+AC^2=3^2+4^2=25
suy ra BC^2=AB^2+AC^2
Theo ĐL Pitago đảo thì tam giác ABC vuông tại A.
a: AC=căn 5^2-3^2=4cm
b: Xét ΔMAB và ΔMCD có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔMAB=ΔMCD
=>AB=CD
c: AB+BC=CD+BC>DB=2BM(ĐPCM)
A) Vì tam giác ABC vuông tại A nên ta có :
AB2+AC2=BC2AB2+AC2=BC2
⇔AC2=BC2−AB2⇔AC2=BC2−AB2
⇔AC2=52−32⇔AC2=52−32
⇔AC2=25−9⇔AC2=25−9
⇔AC2=16⇔AC2=16
⇔AC=4
a) TA CÓ \(AM=MC=\frac{AC}{2}=\frac{4}{2}=2\left(cm\right)\)
ta lại có BM = MD => CM LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta BCD\)
NC = ND => BN LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta BCD\)
HAI ĐƯỜNG NÀY CẮT NHAU TẠI H
=> H LÀ TRỌNG TÂM CỦA \(\Delta BCD\)
MÀ CM LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta BCD\)
\(\Rightarrow CH=\frac{2}{3}CM\)
THAY \(CH=\frac{2}{3}.2\approx1,4\left(cm\right)\)
B) VÌ K LÀ TRUNG ĐIỂM CỦA BC
=> DK LÀ ĐƯỜNG TRUNG TUYẾN THỨ BA CỦA \(\Delta BCD\)
VÌ H LÀ TRỌNG TÂM CỦA \(\Delta BCD\)
BẮT BUỘC DK PHẢI ĐI QUA H
=> \(K,H,D\)THẲNG HÀNG (ĐPCM)
a: Xét ΔMAD và ΔMCB có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)
MD=MB
Do đó: ΔMAD=ΔMCB
=>AD=BC
b: Xét ΔMAB và ΔMCD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD
Do đó: ΔMAB=ΔMCD
=>\(\widehat{MAB}=\widehat{MCD}=90^0\)
=>CD\(\perp\)CA
c: Xét tứ giác ABNC có
AB//NC
AC//BN
Do đó: ABNC là hình bình hành
=>AB=CN
Xét ΔABM vuông tại A và ΔCNM vuông tại C có
AB=CN
AM=CM
Do đó: ΔABM=ΔCNM
Áp dụng định lý Pytago ta có:
AB2+AC2=BC2
=>BC2=32+42=25
=>BC=\(\sqrt{25}\)=5
b)Xét tam giác ADM và tam giác CDM có:
BM=DM(gt)
góc AMD= góc CMD(đối đỉnh)
MA=MC(gt)
=>tam giác ABM = tam giác CDM(c.g.c)
=>góc BAM= góc DCM =90o
=>DC là vuông góc với AC
mình cần câu c, d