Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: ΔACB vuông tại A có AH là đường cao
nên AB^2=BH*BC
a) áp dụng định lý py-ta-go dối với ▲ABC vuông tại A ta có:
BC2=AB2+AC2
BC=10 cm
b)cm ▲HBA dồng dạng ▲ABC(g-g)
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\)
\(\Rightarrow AB^2=BH\cdot BC\)
thay số vào ta có : 62=BHx10
BH=3.6 cm
HC=BC-BH=10-3.6=6.4 cm
a. áp dụng định lý py-ta-go vào tam giác ABC, ta có:
AB2+AC2=BC2
62+82= BC2
36+64= BC2
BC2=100
BC= 10 (cm)
b. bạn thiếu đề rồi ạ.
a, Theo pytago tam giác ABC vuông tại A
\(BC=\sqrt{36+64}=10cm\)
b, Xét tam giác ABC và tam giác AHB
^BAC = ^AHB = 900
^B _ chung
Vậy tam giác BAC ~ tam giác BHA ( g.g )
c, => AB / BH = BC / AB => AB^2 = BH.BC
=> BH = AB^2/BC = 36/10 = 18/5 cm
=> CH = BC - BH = 32/5 cm
d, Ta có AD là đường pg
\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\Rightarrow\dfrac{DC}{AC}=\dfrac{DB}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DC}{AC}=\dfrac{DB}{AB}=\dfrac{DC+DB}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow DB=\dfrac{5}{7}.6=\dfrac{30}{7}cm\)
a: BC=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
DO đó: ΔABC\(\sim\)ΔHBA
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot CB\)
\(a,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\left(pytago\right)\)
\(b,\) Vì \(\widehat{BAC}=\widehat{AHB}\left(=90\right);\widehat{ABC}.chung\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)
\(c,\Delta ABC\sim\Delta HBA\left(cm.trên\right)\\ \Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow AB^2=BH\cdot BC\)
\(d,\) Vì AD là p/g góc A
\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\\ \Rightarrow DC=\dfrac{4}{3}BD\)
Mà \(BD+DC=BC=10\)
\(\Rightarrow\dfrac{4}{3}BD+BD=10\\ \Rightarrow\dfrac{7}{3}BD=10\\ \Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)
a: Sửa đề: Tính BC
\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: ΔABC vuông tại A
mà AH là đường cao
nên AB^2=BH*BC
BH=6^2/10=3,6cm
CH=10-3,6=6,4cm