Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABM và ΔACB có
\(\widehat{BAM}\) chung
\(\widehat{ABM}=\widehat{ACB}\)(gt)
Do đó: ΔABM\(\sim\)ΔACB(g-g)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{H}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
b: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=225\)
hay BC=15cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{12\cdot9}{15}=7.2\left(cm\right)\)
a: BC=căn 9^2+12^2=15cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=15/7
=>BD=45/7cm; CD=60/7cm
AH=9*12/15=108/15=7,2cm
b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có
góc HCA=góc MAE
=>ΔHAC đồng dạng với ΔMEA
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{AC-CN}{AC}=\dfrac{4-3}{4}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
\(M\in AB\)(gt)
\(N\in AC\)(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
Đề có chỗ nhầm lẫn: Từ M vẽ tia Mx vuông góc với AC và cắt AC tại N
a) MN ⊥ AC; AB ⊥ AC => MN // AB
=> Tam giác CMN đồng dạng với ABC
b) MN/AB = CM/CB => MN/9 = 4/15 => MN = 9 . 4 /15
c) AC2 = BC2 - AB2 = 152 - 92 = 144
=> AC = 12
Diện tích ABC = 1/2 x 12 x 9
Vì CMN đồng dạng với ABC theo tỉ số đồng dạng là 4/15
=> Diện tích MNC = (4/15)2 x (diện tích ABC)
Bạn tự thay số rồi tính nhé
Đề sai rồi bạn