Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
=>BA=BD và MA=MD
b: Xét ΔBDE vuông tại D và ΔBAC vuông tại A có
BD=BA
\(\widehat{DBE}\) chung
Do đó: ΔBDE=ΔBAC
c: Xét ΔMKA vuông tại K và ΔMHD vuông tại H có
MA=MD
\(\widehat{KMA}=\widehat{HMD}\)
Do đó: ΔMKA=ΔMHD
=>MK=MH và AK=HD
Xét ΔNKM vuông tại K và ΔNHM vuông tại H có
NM chung
MK=MH
Do đó: ΔNKM=ΔNHM
=>NK=NH và \(\widehat{KMN}=\widehat{HMN}\)
=>MN là phân giác của góc HMK
d: NK+KA=NA
NH+HD=ND
mà NK=NH và KA=HD
nên NA=ND
=>N nằm trên đường trung trực của AD(1)
MA=MD
=>M nằm trên đường trung trực của AD(2)
BA=BD
=>B nằm trên đường trung trực của AD(3)
Từ (1),(2),(3) suy ra B,M,N thẳng hàng
) Ta có:
- AM là đường phân giác góc ABC nên ∠MAB = ∠MAC.
- MH vuông góc với BC nên ∠HMB = 90°.
- ∠BMA = ∠B + ∠MAB = ∠B + ∠MAC.
Vì ∠BMA = ∠HMB và ∠HBM = ∠BMA, nên tam giác ABM = tam giác HBM theo gốc.
b) Ta có:
- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.
- MH vuông góc với BC nên ∠HMB = 90°.
- Ta có ∠HMA = ∠HMB + ∠BAM = 90° + ∠MAC.
Vì ∠HMA = 90° + ∠MAC và ∠AHM = 180° - ∠HMA, nên 180° - ∠AHM = 90° + ∠MAC. Do đó, ∠AHM = ∠MAC.
Vậy AK // HM.
c) Ta có:
- AK // HM (theo b).
- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.
- HN là đường cao của tam giác ABM, nên ∠BNH = 90°.
- Ta có ∠ANH = ∠ANM + ∠MNH = ∠BAM + ∠BNH = ∠BAM + 90°.
Vì ∠ANH = ∠BAM + 90° và ∠HAN = 180° - ∠ANH, nên 180° - ∠HAN = ∠BAM + 90°. Do đó, ∠HAN = ∠BAM.
Vậy HN // AM.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
a) 2 tam giác = nhau (cạnh huyền góc nhọn )
b) gọi i guiao điểm BM và AE .2 tam giác trên bằng nhau => AB=BE Nên tam giác ABE cân tại B dễ dàng cm 2 tam giác ABi và BIE =nhau theo trường hoợ (g-c-g).tự cm rta đc vuông góc
c) Xét 2 tam giác MEC và AMN . góc MAB =90 độ,góc MEC= 90 độ. AM=ME ( vì tam giacs ABM= tam giác BEM). gocs AMN= gocs EMC.xong 2 tam giác bằng nhau theo trường hợp (g-c-g)
a, xét 2 tam giác vuông ABM và HBM có:
MB cạnh chung
\(\widehat{ABM}\)=\(\widehat{HBM}\)(gt)
=> \(\Delta\)ABM=\(\Delta\)HBM (CH-GN)
b, Vì \(\Delta\)ABM=\(\Delta\)HBM(câu a) suy ra MA=MH(2 cạnh tương ứng)
c,Ta có: \(\Delta\)AMK=\(\Delta\)HMC(cạnh góc vuông-góc nhọn kề)
=> AK=HC(2 cạnh tương ứng) mà AB=HB suy ra KB=CB
=> \(\Delta\)KBC cân tại B
Sửa đề: ΔABC vuông tại C
a) Xét ΔAHC vuông tại H và ΔAHD vuông tại H có
AH chung
HC=HD(gt)
Do đó: ΔAHC=ΔAHD(hai cạnh góc vuông)
a) Xét ΔABM vuông tại A và ΔHBM vuông tại H có
BM chung
\(\widehat{ABM}=\widehat{HBM}\)(BM là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABM=ΔHBM(cạnh huyền-góc nhọn)
giúp câu c vs