K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

có tam giác abc  vuông tại a => b+c= 90 => b= 40 

có tam giác abc vuông tại a

=> \(sinc=\frac{AB}{BC}\)

\(\Rightarrow sin50^o=\frac{AB}{10}\Rightarrow AB=10.sin50^o\Rightarrow AB=\)( TỰ TÍNH )

có tam giác abc vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\left(PITAGO\right)\)

 thay BC = 10 ; AB  vừa tính  sẽ tính được AC

B)

có tam giác abc vuông tại a mà AM là đường phân giác => AM  cũng là đường cao ( trong tam giác vuông 1 đường là 4 đường - lớp 8)

xét tam giác abc vuông tại A mà AM  là đường cao 

áp dụng hệ thức lượng trong tam giác vuông ta có

\(AB^2=BM.BC\)

  thay AB  ( tính ở trên ) và BC = 10 ( đầu bài ) =>  ta tính được BM

  CÓ :  BM + CM=BC 

 THAY  BC  và BM (  tính được ở trên ) ta  tính được CM

26 tháng 10 2018

 mk lười tính lên tính hộ mk

hình đây 

  B A C M

20 tháng 10 2023

1: ΔABC vuông tại A 

nên ΔABC nội tiếp đường tròn đường kính BC

=>O là trung điểm của BC

ΔOAD cân tại O

mà OI là đường cao

nên I là trung điểm của AD

Xét ΔABC vuông tại A có AI là đường cao

nên \(IA^2=IB\cdot IC\)

=>\(IA\cdot ID=IB\cdot IC\)

2:

a: AB=AC

OB=OC

Do đó: AO là đường trung trực của BC

=>AO vuông góc BC tại trung điểm của BC

=>AO vuông góc BC tại H và H là trung điểm của BC

b: Xét (O) có

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{BOC}=2\cdot\widehat{BAC}=120^0\)

ΔOBC cân tại O

mà OH là đường cao

nên OH là phân giác của góc BOC

=>\(\widehat{BOH}=\dfrac{120^0}{2}=60^0\)

c: Xét ΔAHB vuông tại H có

\(sinB=\dfrac{AH}{AB}\)

=>\(\dfrac{6}{AB}=\dfrac{\sqrt{3}}{2}\)

=>\(AB=4\sqrt{3}\left(cm\right)\)

=>\(BC=4\sqrt{3}\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot4\sqrt{3}=12\sqrt{3}\left(cm^2\right)\)

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:

\(AH\cdot AC=AB^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABK vuông tại A có AH là đường cao ứng với cạnh huyền BK, ta được:

\(BK\cdot BH=AB^2\)(2)

Từ (1) và (2) suy ra \(AH\cdot AC=BK\cdot BH\)

1 tháng 10 2023

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

1 tháng 10 2023

 

 

25 tháng 10 2021

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

26 tháng 10 2021

Giải dùm em câu d nữa ạ

 

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d