Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
ABC - C = 40 o
=> ABC = 40 o + C
Xét tam giác ABC vuông tại A ta có :
ABC + C = 90 o ( Định lý )
=> 40 o + C + C = 90 o
=> 2 C = 50 o
=> C = 25 o
=> ABC = 90 o - 25 o = 65 o
Vậy ABC = 65 o và C = 25 o
ABC + A + C =180
ABC + C = 90
-
ABC - C = 40
2C = 50
C =25
ABC = 65
Xét tam giác BAH
Có B+BAH=900(vì tam giác BAH vuông tại H)
500+BAH=900
=>BAH=900-500
=>BAH=400
Xét tam giác HAC
Có C+HAC=900(Tam giác HAC vuông tại H)
400+HAC= 900
HAC=900-400
HAC=500
B)Xét tam giác ABH
Có AB2 = HB2+AH2(Theo định lý Pi-ta-go)
AB2=32+42
AB2=25=52
AB=5
Xét tam giác CAH
Có AC2=AH2+HC2 (Theo định lý Pi-ta-go)
AC2=42+42=32=
Bài làm:
a) Ta có : \(\widehat{A_1}+\widehat{C}=90^o\)( 2 góc phụ nhau)
\(\widehat{A_2}+\widehat{B}=90^o\) ( 2 góc phụ nhau)
\(=>\widehat{A_1}+\widehat{C}+\widehat{A_2}+\widehat{B}=90^o+90^o\)
\(=>\left(\widehat{A_1}+\widehat{A_2}\right)+\left(\widehat{B}+\widehat{C}\right)=180^o\)
Mà \(\widehat{B}=2.\widehat{C}\) (gt)
\(=>90^o+2\widehat{C}+\widehat{C}=180^o\)
\(=>3\widehat{C}=90^o=>\widehat{C}=30^o\)
\(=>\widehat{B}=2.30^o=60^o\)
b) _ Xét tam giác AHC vuông tại H có:
\(\widehat{A_1}+\widehat{C}=90^o\) ( 2 góc phụ nhau)
\(=>\widehat{A_1}+30^o=90^o=>\widehat{A_1}=60^o\)
Hay \(\widehat{HAC}=60^o\)
c) _ Ta có : \(\widehat{B}+\widehat{BHK}=90^o\) ( 2 góc phụ nhau)
\(\widehat{A_1}+\widehat{C}=90^o\)( 2 góc phụ nhau)
Mà \(\widehat{B}=\widehat{A_1}\left(=60^o\right)\)
\(=>\widehat{BHK}=\widehat{C}\)
cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt :>
+)ΔABC vuông tại A \(\Rightarrow\widehat{A}=90^o\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(=>90^o+40^o+\widehat{C}=180^o\)
\(=>\widehat{C}=180^o-90^o-40^o=50^o\)
Vậy \(\widehat{C}=50^o\)
------------------------------------------
+)Tam giác ABC vuông tại B \(\Rightarrow\widehat{B}=90^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}+\widehat{C}=2.\widehat{C}+\widehat{C}=3.\widehat{C}\)
+)Áp dụng định lý tổng ba góc trong tam giác vào tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}+90^o+\widehat{C}=180^o\)
\(=>\widehat{A}+\widehat{C}=180^o-90^o\)
\(=>3.\widehat{C}=90^o\)
\(=>\widehat{C}=\dfrac{90^o}{3}=30^o\)
+)\(\widehat{A}=2.\widehat{C}\Rightarrow\widehat{A}=2.30^o=60^o\)
Vậy: \(\widehat{A}=60^o\) ; \(\widehat{C}=30^o\)
1: góc C=90-40=50 độ
2: góc A=2/3*90=60 độ
góc C=90-60=30 độ