K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0

a) Xét ΔABE và ΔCKE có 

EB=EK(gt)

\(\widehat{AEB}=\widehat{CEK}\)(hai góc đối đỉnh)

EA=EC(E là trung điểm của AC)

Do đó: ΔABE=ΔCKE(c-g-c)

 

b) Xét ΔAME vuông tại M và ΔCNE vuông tại N có 

EA=EC(E là trung điểm của AC)

\(\widehat{AEM}=\widehat{CEN}\)(hai góc đối đỉnh)

Do đó: ΔAME=ΔCNE(Cạnh huyền-góc nhọn)

Suy ra: AM=CN(hai cạnh tương ứng)

11 tháng 12 2021

a: Xét ΔABC và ΔEFC có

CA=CE

FC=BC

AB=EF

Do đó: ΔABC=ΔEFC

28 tháng 12 2021

Bài 1: 

a: Xét ΔABE và ΔDBE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔABE=ΔDBE

14 tháng 1 2022

Có rồi đấy ạ

a: Xét ΔABE và ΔCFE có 

EA=EC

\(\widehat{AEB}=\widehat{CEF}\)

EB=EF

Do đó: ΔABE=ΔCFE

b: Xét tứ giác ABCF có

E là trung điểm của AC

E là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra; BC//AF

a) Ta có \(\widehat{BAE}=\widehat{CAE}=\widehat{\dfrac{CAB}{2}}\)

hay \(\widehat{BAE}=\widehat{FAE}\)

Xét \(\Delta ABEvà\Delta AFEcó\)

\(AB=AF\) (giả thiết )

 \(\widehat{BAE}=\widehat{FAE}\) (chứng minh trên)

\(AE\)  cạnh chung 

 \(\Rightarrow\Delta ABE=\Delta AFE\left(c-g-c\right)\)

vậy \(\Delta ABE=\Delta AFE\)

b) ta có  \(\Delta ABE=\Delta AFE\) (chứng minh câu a)

\(\Rightarrow\widehat{EBA}=\widehat{EFA}\) (2 góc tương ứng)

\(\widehat{EAB}=90độ\) \(\Rightarrow\widehat{EFA}=90độ\)

\(\Rightarrow EF\perp AC\)

vậy \(EF\perp AC\)

c)ta có  \(\Delta EAB=\Delta EFA\) (chứng minh câu a)

\(\Rightarrow EB=EF\)

Xét \(\Delta CEFvà\Delta MEBcó\)

\(EF=EB\) (chứng minh trên)

\(\widehat{CEF}=\widehat{MEB}\) (2 góc đối đỉnh )

\(CE=ME\) (giả thiết )

\(\Rightarrow\Delta CEF=\Delta MEB\left(c-g-c\right)\)

\(\Rightarrow\widehat{EBM}=\widehat{EMC}\) mà \(\widehat{EMC}=90độ\) (vì\(EF\perp AC\))

\(\Rightarrow\widehat{EBM}=90độ\) mà \(\widehat{EBA}=90độ\)

\(\Rightarrow\widehat{EBM}+\widehat{EBA}=180độ\)

\(\Rightarrow\text{B,A,M thẳng hàng}\)

vậy\(\text{B,A,M thẳng hàng}\)

 

\(\Delta ABEvà\Delta AFEcó\)\(\Rightarrow EF\perp AC\)\(\Rightarrow EF\perp AC\)

\(\Rightarrow\widehat{EBA}=\widehat{EFA}\) 

 

 

a: Xét ΔABM và ΔACN có

AB=AC

góc ABM=góc ACN

BM=CN

Do đó: ΔABM=ΔACN

=>AM=AN

b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có

BM=CN

góc M=góc N

Do đó: ΔBME=ΔCNF

c: góc OBC=góc EBM

góc OCB=góc FCN

mà góc EBM=góc FCN

nên góc OBC=góc OCB

=>OB=OC

mà AB=AC
nên AO là trung trực của BC

=>AO vuông góc với BC

ΔAMN cân tại A

mà AO là đường cao

nên AO là phân giác của góc MAN