K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bổ sung đề: \(\widehat{B}=30^0\)

a) Xét ΔABC vuông tại A có \(\widehat{B}=30^0\)(gt)

mà cạnh đối diện với \(\widehat{B}\) là cạnh AC

nên \(AC=\dfrac{1}{2}\cdot BC\)(Định lí tam giác vuông)

\(\Leftrightarrow AC=\dfrac{1}{2}\cdot7=\dfrac{7}{2}cm\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=7^2-\left(\dfrac{7}{2}\right)^2=\dfrac{147}{4}\)

hay \(AB=\dfrac{7\sqrt{3}}{2}cm\)

Vậy: AC=3,5cm; \(AB=\dfrac{7\sqrt{3}}{2}cm\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC

b: BH=CH=12/2=6cm

=>AC=căn AH^2+HC^2=10cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>HD=HE

=>ΔHDE cân tại H

27 tháng 3 2022
 

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

Chứng minh

a) Xét tam giác AHB và tam giác AHC có:

Đề thi Giữa kì 2 Toán lớp 7 có đáp án (Đề 3)

27 tháng 3 2022

b) có tam giác ABC cân tại A

=> AB=AC

có BC=BH+HC

=> BC=12:2=6(cm)

=> BH=6;HC=6

có tam giác AHC

=> áp dụng định lí pytago có 

=>AH2+HC2=AC2

=>82+62=AC2

=>AC2=102

=>AC=10

28 tháng 4 2016

999 - 888 - 111 + 111 - 111 + 111 - 111

= 111 - 111 + 111 -111 + 111 - 111

= 0 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111

= 0 + 111 - 111

= 111 - 111

= 0

Đáp số: 0

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

hay HB=HC 

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

hay \(\widehat{BAH}=\widehat{CAH}\)

b: BH=CH=BC/2=4(cm)

nên AH=3(cm)

c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

DO đó: ΔAEH=ΔADH

Suy ra: HE=HD

hay ΔHDE cân tại H

25 tháng 12 2022

bạn ơi, cho mình xem hình vẽ với

 

18 tháng 2 2017

Xét 2 tam giác ΔAHB và ΔAHC có:
cạnh AH chung 
AHB^=AHC^=90∘ (do AH ⊥ BC)
AB=AC 
suy ra ΔAHB=ΔAHC (cạnh huyền- cạnh góc vuông)
⇒BH=CH và BAH^=CAH^
 

31 tháng 1 2019

a) Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta AHC\left(Ch-gn\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{HAC}\)
b) Ta có : HB=HC (cma ) 
Mà HB + HC = BC 
=> HB = HC = 4 cm
Xét \(\Delta ABH\)vuông tại H có : AB2=HA2+BH2 (Pytago)
=> AH2 = AB2 - HB2 
=> AH2 = 52 - 42 = 9 
=> AH = 3 (cm)
c) Xét \(\Delta HBD\)và \(\Delta HEC\)có:
HB = HC (cma)
\(\widehat{HDB}=\widehat{HEC}\left(=90^o\right)\)
=> \(\Delta HBD=\Delta HEC\left(Ch-gn\right)\)
=> HD = HC ( 2 cạnh tương ứng)
=> \(\Delta HDE\)cân tại H 

1 tháng 2 2019

Góc BAH =góc HAC là 2 góc tương ứng 

HẢ BN

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=5^2-3^2=16\)

hay CH=4(cm)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AB^2=3^2+2.25^2=14.0625\)

hay AB=3,75(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=2,25+4=6,25(cm)

Chu vi của tam giác ABH là: 

\(C_{ABH}=AB+BH+HA=3.75+2.25+3=9\left(cm\right)\)

Chu vi của tam giác ACH là:

\(C_{ACH}=AC+CH+AH=5+3+4=12\left(cm\right)\)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+AC+BC=3.75+6.25+5=15\left(cm\right)\)

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

mà BH+CH=BC(H nằm giữa B và C)

nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=BH^2+AH^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3cm

b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có 

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDBH=ΔECH(Cạnh huyền-góc nhọn)

Suy ra: HD=HE(hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

Trả lời:

a/ Xét tam giác ABH( góc H = 90 độ) và tam giác ACH( góc H = 90 độ)
Có: AB = AC(gt)
Góc ABH = góc ACH(gt)
=> Tam giác ABH = tam giác ACH (cạnh huyền - góc nhọn)
=>HB = HC (2 cạnh tương ứng)
=>Góc CAH = góc BAH( 2 góc tương ứng)

b) Ta có: HB = HC = BC2=82=4(cm)BC2=82=4(cm)

ΔABHΔABH vuông tại H, theo định lí Py-ta-go

Ta có: AB2 = AH2 + HB2

=> AH2 = AB2 - HB2

AH2 = 52 - 42

AH2 = 9

Vậy: AH = 9–√=3(cm)9=3(cm)

c) Xét hai tam giác vuông BDH và CEH có:

HB = HC (cmt)

Bˆ=CˆB^=C^ (do ΔABCΔABC cân tại A)

Vậy: ΔBDH=ΔCEH(ch−gn)ΔBDH=ΔCEH(ch−gn)

Suy ra: HD = HE (hai cạnh tương ứng)

Do đó: ΔHDEΔHDE cân tại H

                      ~Học tốt!~