Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có FD song song với AE(cùng vuông góc với AB)
=>Góc BDC = Góc DCE (đồng vị)(1)
Từ(1) và góc BFD = Góc DEC = 90 độ
=> ĐPCM Câu a
b,Có E TĐ AC ; f trung điểm AB
\(\Rightarrow\frac{AE}{AC}=\frac{ÀF}{AB}=\frac{1}{2};\widehat{A}chung\)
=>Tam giác AEF đồng dạng ACB => ĐPCM (câu b)
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
b: góc BAD+góc CAD=90 độ
góc BDA+góc HAD=90 độ
mà góc CAD=góc HAD
nên góc BAD=góc BDA
=>ΔBAD cân tại B
=>BF vuông góc AD tại F
Xét ΔEFA vuông tại F và ΔEHB vuôg tại H có
góc FEA=góc HEB
=>ΔEFA đồng dạng với ΔEHB
=>EF/EH=EA/EB
=>EF*EB=EA*EH
c: Xét ΔBAK và ΔBDK có
BA=BD
góc ABK=góc DBK
BK chung
=>ΔBAK=ΔBDK
=>góc BDK=90 độ
=>DK vuông góc BC
=>DK//AH