K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

a, Ta có : EM//AC

Mà : AC vuông với AB và=> EM vuông với AB (E=90) và BE=BA (Vì M là tđ)

Và : MF//AB

Mà : AB vuông với AC => MF vuông với AC (F=90) và AF=FC (Vì M là tđ)

Xét tam giác ABC có : 

BE=BA

AF=FC

=> EF là tđb

=> EF=1/2 BC và EF//BC

Hay : tứ giác BECF là hình thang (EF//BC)

b,Xét tứ giác EMAF có :

E=F=A=90

=> EMAF là HCN 

c, Ta có : O là trung điểm của AM

Mà EMAF là HCN

Nên EF sẽ đi qua O và O là trung điểm của EF

Hay : E đối xứng với F qua O 

8 tháng 12 2016

dhnb hình thang

6 tháng 12 2015

ai giúp mình cho thẻ 10k

 

27 tháng 11 2021

a, Ta co : M la trung diem cua BC

Ma EM//AC =>E=90(A=90)

Hay : E la trung diem AB

Và MF//AB =>F=90 (A=90)

Hay : F la trung diem AC

Xét tam giác ABC co : 

BE=EA va AF=FC

=>EF la tdb => EF=1/2BC va EF//BC

Hay tu giac EFBC la hinh thang (2 goc day song song)

b, Xet tu giac EMFA co : 

A=E=F=90

=>EMFA la HCN

C, Ta co : AM cat EF tai O 

Hay O la trung diem cua AM va EF

Nen EF se di qua O

Vay E va F doi xung qua O

d, Xet tam giac AMC co : 

AO=OM va AF=FC

=>OF la dtb => OF=1/2MC va OF//MC

Xet tam gac AMC co : 

AO=OM va MD=DC

=>OD la dtb => OD=1/2AC va OD//AC

Xet tu giac OMDF co : 

OF//MC=>OF//MD

OF=1/2MC=>OF=MD(MD=DC)

=>OMDF la HBH

Ma EA vuong goc voi AC

Hay MF vuong goc voi OD (MF//AE va OD//AC)

=> Hình bình hành OMDF là hình thoi ( HBH có 2 đường chéo vuông góc với nhau là hình thoi)

12 tháng 12 2016

a, Ta co : M la trung diem cua BC

Ma EM//AC =>E=90(A=90)

Hay : E la trung diem AB

Và MF//AB =>F=90 (A=90)

Hay : F la trung diem AC

Xét tam giác ABC co : 

BE=EA va AF=FC

=>EF la tdb => EF=1/2BC va EF//BC

Hay tu giac EFBC la hinh thang (2 goc day song song)

b, Xet tu giac EMFA co : 

A=E=F=90

=>EMFA la HCN

C, Ta co : AM cat EF tai O 

Hay O la trung diem cua AM va EF

Nen EF se di qua O

Vay E va F doi xung qua O

d, Xet tam giac AMC co : 

AO=OM va AF=FC

=>OF la dtb => OF=1/2MC va OF//MC

Xet tam gac AMC co : 

AO=OM va MD=DC

=>OD la dtb => OD=1/2AC va OD//AC

Xet tu giac OMDF co : 

OF//MC=>OF//MD

OF=1/2MC=>OF=MD(MD=DC)

=>OMDF la HBH

Ma EA vuong goc voi AC

Hay MF vuong goc voi OD (MF//AE va OD//AC)

=> Hình bình hành OMDF là hình thoi ( HBH có 2 đường chéo vuông góc với nhau là hình thoi)

29 tháng 9 2016

D E A B C M F K S O Q

a/ Dễ thấy ABDC là hình chữ nhật dựa theo dấu hiệu nhận biết.

b/ Dễ thấy.

c/ Ta có EA = AB ; BM = CM => AM là đường trung bình tam giác BCE => AM // CE =>  AECM là hình thang

d/ Chứng minh được AE = CD ; AE // CD => AECD là hình bình hành

e/ Vì AECD là hình bình hành nên AD // CF => góc CFD = góc FDA (1)

Mặt khác, AM // CE (AMCE là hình thang) mà BF vuông góc với CE => BF vuông góc AM

=> FM là đường cao của tam giác vuông FAD . Từ đó dễ dàng suy ra Góc AFB = góc FDA (2)

Từ (1) và (2) suy ra góc CFD = góc AFB mà góc CFD + góc DFB = 90 độ

=> góc AFB + góc DFB = góc AFD = 90 độ 

16 tháng 12 2022

a: Xét ΔCAB có

M là trung điểm của CB

ME//BA

Do đó: E là trung điểm của AC

b: Xét tứ giác AFME có

AF//ME

AE//MF

Do đó: AFME là hình bình hành

=>AM cắt FE tại trung điểm của mỗi đường

=>E,O,F thẳng hàng

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc