K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

D E A B C M F K S O Q

a/ Dễ thấy ABDC là hình chữ nhật dựa theo dấu hiệu nhận biết.

b/ Dễ thấy.

c/ Ta có EA = AB ; BM = CM => AM là đường trung bình tam giác BCE => AM // CE =>  AECM là hình thang

d/ Chứng minh được AE = CD ; AE // CD => AECD là hình bình hành

e/ Vì AECD là hình bình hành nên AD // CF => góc CFD = góc FDA (1)

Mặt khác, AM // CE (AMCE là hình thang) mà BF vuông góc với CE => BF vuông góc AM

=> FM là đường cao của tam giác vuông FAD . Từ đó dễ dàng suy ra Góc AFB = góc FDA (2)

Từ (1) và (2) suy ra góc CFD = góc AFB mà góc CFD + góc DFB = 90 độ

=> góc AFB + góc DFB = góc AFD = 90 độ 

a: Xét tứ giác ANKM có 

\(\widehat{ANK}=\widehat{AMK}=\widehat{MAN}=90^0\)

Do đó: ANKM là hình chữ nhật

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.a) CM: OEFC là hình thangb) CM: OEIC là hình bình hành.c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu...
Đọc tiếp

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!

Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.

a) CM: OEFC là hình thang

b) CM: OEIC là hình bình hành.

c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. 

d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)

 

Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.

a) CM: ADCH là hình chữ nhật.

b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.

c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.

d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)

 

Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.

a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.

b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.

c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)

1
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

18 tháng 12 2017

câu b là phải chứng minh ADBC là hình bình hành chứ nhỉ . Sao lại có hình bình hành ABDC được?

a: Xét tứ giác AMIN có

\(\widehat{AIM}=\widehat{AIN}=\widehat{NAM}=90^0\)

Do đó: AMIN là hình chữ nhật

17 tháng 11 2019

a, tam giác ABC vuông tại C (gt)

=> góc ACB = 90 (đn)

có ME _|_ AC (gt) => góc MEC = 90 (đn)

MF _|_ BC (gt) => góc MFC  = 90 (đn)

xét tứ giác EMFC 

=> EMFC là hình chữ nhật (dấu hiệu)

=> CM = EF (tính chất)

b, M là trung điểm của AB (Gt)

=> CM là trung tuyến (đn/)

tam giác ABC vuông tại C (Gt)

=> CM = AM = AB/2 (đl)

xét tam giác AME và tam giác CME có : EM chung

góc MEA = góc MEC = 90 

=> tam giác AME = tam giác CME (ch-cgv)

=> AE = EC (đn)

E thuộc AC 

=> E là trung điểm của AC (đn)

c, có ME _|_ AC 

=> MD _|_ AC ; xét tứ giác ADCM 

=> ADCM là hình thoi (dấu hiệu)

16 tháng 12 2021

h