Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác AIHK có
\(\widehat{KAI}=\widehat{AIH}=\widehat{AKH}=90^0\)
Do đó: AIHK là hình chữ nhật
Suy ra: IK=AH
a) Xét tứ giác ADHE có
\(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), E∈AC, D∈AB)
\(\widehat{ADH}=90^0\)(HD⊥AB)
\(\widehat{AEH}=90^0\)(HE⊥AC)
Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Xét ΔCEH vuông tại E có EM là đường trung tuyến ứng với cạnh huyền CH(M là trung điểm của CH)
nên \(EM=\dfrac{CH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(MH=\dfrac{CH}{2}\)(M là trung điểm của CH)
nên EM=MH
Xét ΔMEH có ME=MH(cmt)
nên ΔMEH cân tại M(Định nghĩa tam giác cân)
⇒\(\widehat{MEH}=\widehat{MHE}\)(hai góc ở đáy)
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{1}{2}BC\)
DE//BC
mà H\(\in\)BC
nên DE//CH
Xét tứ giác DECH có DE//CH
nên DECH là hình thang
Ta có: ΔHAB vuông tại H
mà HD là đường trung tuyến
nên \(HD=DA=DB=\dfrac{AB}{2}\)
Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=AE=EC=\dfrac{AC}{2}\)
Xét ΔEAD và ΔEHD có
EA=EH
DA=DH
ED chung
Do đó: ΔEAD=ΔEHD
=>\(\widehat{EAD}=\widehat{EHD}=90^0\)
Xét tứ giác ADHE có
\(\widehat{DAE}+\widehat{DHE}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp
b: Xét tứ giác AHCF có
E là trung điểm chung của AC và HF
=>AHCF là hình bình hành
Hình bình hành AHCF có \(\widehat{AHC}=90^0\)
nên AHCF là hình chữ nhật
Sửa đề: K là trung điểm của CH
a: Xét tứ giác APHQ có
\(\widehat{APH}=\widehat{AQH}=\widehat{PAQ}=90^0\)
Do đó: APHQ là hình chữ nhật
b: ΔCQH vuông tại Q
mà QK là đường trung tuyến
nên \(QK=KH=KC=\dfrac{CH}{2}\)
Xét ΔKQH có KQ=KH
nên ΔKQH cân tại K
c: \(\widehat{KQP}=\widehat{KQH}+\widehat{PQH}\)
\(=\widehat{KHQ}+\widehat{PAH}\)
\(=\widehat{HAB}+\widehat{HBA}=90^0\)
=>KQ\(\perp\)QP(1)
ΔHPB vuông tại P
mà PI là đường trung tuyến
nên PI=IH=IB
=>ΔPIH cân tại I
\(\widehat{QPI}=\widehat{QPH}+\widehat{IPH}\)
\(=\widehat{QAH}+\widehat{IHP}\)
\(=\widehat{HAC}+\widehat{HCA}=90^0\)
=>QP\(\perp\)PI(2)
Từ (1) và (2) suy ra PI//QK