K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADC vuông tại A và ΔADI vuông tại A có

AD chung

AC=AI

=>ΔADC=ΔADI

b: Xét ΔBCI có

BA là đườg cao, là trung tuyến

=>ΔBCI cân tại B

c: \(CD=\sqrt{8^2+3^2}=\sqrt{73}\left(cm\right)\)

=>\(CG=\dfrac{2}{3}\sqrt{73}\left(cm\right)\)

a: BC=căn 8^2+6^2=10cm

b: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

=>CB=CD

Xét ΔCDE và ΔCBE có

CD=CB

góc DCE=góc BCE

CE chung

=>ΔCDE=ΔCBE

c: ΔCBD có CB=CD nên ΔCBD cân tại C

a)Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\) (ĐL Pytago)

\(5^2=3^2+AC^2\)

25=9+\(AC^2\)

25-9=\(AC^2\)

\(AC^2\)=16

Vậy...

b)góc BAC=góc DAC(2 góc này ở vị trì kề bù)

Xét tam giác BAC  và tam giác DAC có:

BC=AD(gt)

góc BAC=góc DAC(cmt =90độ )

AC cạnh chung

\(\Rightarrow\Delta ABC=\Delta ADC\)(2 cgv)

\(\Rightarrow BC=DC\)(..)(1)

và góc B= góc D(...)(2)

Từ (1) và(2)có tam giác BCD cân tại C

 

15 tháng 3 2022

undefined

15 tháng 3 2022

d)của bài khác nha

29 tháng 5 2021

a,xét tam giác ACH và tam giác DCH có:

HA=HD(gt)

góc CHA= góc CHD(vì CH\(\perp\)AD)

HC chung => tam giác ACH=tam giác DCH(c.g.c)

tam giác ADC có CH vừa là trung tuyến đồng thời là đường cao=>tam giác ADC cân tại C

b,xét tam giác AHB và tam giác DHE có:

góc BHA= góc DHE( đối đỉnh)

HA=HD(cmt), HB=HE(gT)=>tam giác AHB= tam giác DHE(c.g.c)

gọi giao điểm DE với AC là K

vì tam giác AHB= tam giác DHE(cmt)=>góc HED= góc HBA

mà góc HED=góc CEK( đối đỉnh)=> góc HBA=góc CEK

lại có tam giác ABC vuông tại A=> góc HBA+ góc ECK=90 độ=> góc CEK+góc ECK=90 độ=>DK\(\perp AC\)

hay DE \(\perp AC\) mà CE\(\perp AD\)(tại H)=>E là trực tâm tam giác ADC

ăn cơm đã ý c tí mik làm sau

29 tháng 5 2021

help mình

a: BC=8cm

BC>AC

=>góc A>góc B

b: XétΔABD có

AC vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

c: GB+2GC=GB+GA>AB

9 tháng 5 2020

1.

a) Xét ΔADE có :

HE là đường trung tuyến của AD HA=HD )(1)

Ta thấy HC=12BC ( AH là đường trung tuyến của BC )

Mà BC = CE (gt )

⇒HC=12CE (2)

Từ (1) và (2) ⇒C là trọng tâm của ΔADE

b) Hơi khó đấy :)

Xét ΔAHB và ΔAHC có :

HAHA chung

HB=HC ( AH là đường trung tuyến của BC )

AB=AC( ΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=1800

⇒AHB^=AHC^=1800/2=90o

Xét ΔAHEvà ΔHED có :

HEHE chung

HA=HD( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=900)

Do đó : ΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAED là đường trung tuyến của DE )

Xét vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DE Mà 12DE=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ

Dễ thấy MEHˆ=HEAˆ(cmt)

⇒MHEˆ=HEAˆ

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AE(đpcm)

2.

a) ta có:  \(\Delta OAB,\Delta OAC\) có diện tích bằng nhau và cùng đáy OA nên khoảng cách từ B , C kẻ đến OA 

nên BH=CK

b) gọi AK giao với BC tại M

Xét \(\Delta BHM\)và   \(\Delta CKM\)  có: 

..........

3.

a. xét tgiac ADC và tgiac ADB có

AD là cạnh chung

góc DAB = góc DAC(gt)

AB=AC(gt)

vậy tg ADC=tg ADB(c.g.c)

b.theo cminh cau a ta có DB=DC(2 cạnh tương ứng)

nên AD là đường trung tuyến ứng với cạnh BC mà G là trọng tâm tâm giác ABC nên A D G thẳng hàng

k mk nha thack ae

Bài 1  : 

a) Vì AH = HD => EH là đg trung tuyến của tg ADE
Khi đó C thuộc đg trung tuyến EH (1)
Do tam giác  ABC cân tại A
mà AH là đường cao của tam giác ABC
=> AH là đg trung trực của tam giác ABC
=> BH = CH
=> BH = CH = \(\frac{1}{2}\)BC
Lại do BC = CE
=> CH = \(\frac{1}{2}\) CE
hay CE = \(\frac{2}{3}\) EH (2)
Từ (1); (2) => C là trọng tâm của tam giác ADE.

b) Có : AH là đường cao của ΔABC
⇒ Góc AHC = 90
⇒ Góc DHC = 90 (kề bù)
Xét ΔAHE và ΔDHE có:
+ AH = DH (gt)
+ Góc AHE = góc DHE = 90
+ HE chung
⇒ ΔAHE = ΔDHE
⇒ Góc EAH = góc EDH (1)
Lại có: Tia AC cắt DE tại M
Mà C là trong tâm của ΔADE
⇒ AM là trung tuyến của ΔADE
⇒ M là trung điểm của DE
Mà ΔDHE là tam giác vuông tại H (do DHE = 90 )
⇒ HM là đường trung tuyến của cạnh huyền
⇒ HM = DM = EM
⇒ ΔHMD cân tại M
⇒ Góc MHD = góc MDH (2)
Từ (1) + (2) ⇒ Góc EAH = góc MHD
Mà hai góc này là hai góc đồng vị
⇒ AE // HM (đpcm)