K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2022

Tham khảo

 

a) Vì tam giác ABC vuông tại A. 

=> AB + AC = BC

Thay số: 6 + 8 =BC

=> BC= 14 cm

b) Vì 8 cm >6cm  Mà cạnh AB đối diện với góc ACB, cạnh AC đối diện với góc ABC 

=> Góc ABC > góc ACB

15 tháng 5 2022

Tham khảo

 

c) Xét 2 tam giác ABD và HBD có: 

+ AB = AC (Giả thiết)

+ BD là cạnh chung

+ Góc BAD = góc BHD = 90 độ (GT)

=> Tam giác ABD= t/g HBD(cạnh huyền- cạnh góc vuông)

=> Góc ABD= góc HBD(hai cạnh tương ứng)

=> BD là tia phân giác của ABC

d) Vì Tam giác BHD = t/g BAD => AD = HD (2 cạnh tương ứng)

Xét 2 t/g EDA , CDH có :

+ Góc EDA = góc HDG ( 2 góc đối đỉnh)

+ DA = DH ( cmt )

+ Góc EAD = góc CHD  =90 độ (GT) 

=> T/g EDA = t/g CDH (g-c-g)

=> ED = CD (2 cạnh tương ứng)

=. T/g EDC cân tại D

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

30 tháng 8 2020

a) Vì tam giác ABC vuông tại A. 

=> AB + AC = BC

Thay số: 6 + 8 =BC

=> BC= 14 cm

b) Vì 8 cm >6cm  Mà cạnh AB đối diện với góc ACB, cạnh AC đối diện với góc ABC 

=> Góc ABC > góc ACB

c) Xét 2 tam giác ABD và HBD có: 

+ AB = AC (Giả thiết)

+ BD là cạnh chung

+ Góc BAD = góc BHD = 90 độ (GT)

=> Tam giác ABD= t/g HBD(cạnh huyền- cạnh góc vuông)

=> Góc ABD= góc HBD(hai cạnh tương ứng)

=> BD là tia phân giác của ABC

d) Vì Tam giác BHD = t/g BAD => AD = HD (2 cạnh tương ứng)

Xét 2 t/g EDA , CDH có :

+ Góc EDA = góc HDG ( 2 góc đối đỉnh)

+ DA = DH ( cmt )

+ Góc EAD = góc CHD  =90 độ (GT) 

=> T/g EDA = t/g CDH (g-c-g)

=> ED = CD (2 cạnh tương ứng)

=. T/g EDC cân tại D

20 tháng 3 2022

CÂU A BẠN LÀM SAI R

 

d: BK=BA+AK

BC=BE+EC

mà BA=BE và AK=EC

nên BK=BC

=>góc BKC=góc BCK

9 tháng 3 2022

câu c thiếu đề nha pạn

9 tháng 3 2022

c) Trên tia đối của tia AB lấy điểm I sao cho 𝐴𝐼=𝐻𝐶. Chứng minh: ∆𝐻𝐾𝐶=∆𝐴𝐾𝐼 , từ đó chứng minh ∆𝐾𝐼𝐶 cân. 

Sorry chắc lúc nãy ghi thiếu

7 tháng 3 2022

a) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right).\)

Thay: \(BC^2=6^2+8^2.\)

\(\Rightarrow BC=8\left(cm\right).\)

16 tháng 5 2022

ai giải giùm mình với

 

a) Xét ΔABC có AB<AC(6cm<8cm)

mà góc đối diện với cạnh AB là \(\widehat{ACB}\)

và góc đối diện với cạnh AC là \(\widehat{ABC}\)

nên \(\widehat{ABC}>\widehat{ACB}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

BA=BH(gt)

Do đó: ΔABD=ΔHBD(cạnh huyền-cạnh góc vuông)

nên \(\widehat{ABD}=\widehat{HBD}\)(hai góc tương ứng)

mà tia BD nằm giữa hai tia BA,BH

nên BD là tia phân giác của \(\widehat{ABH}\)

hay BD là tia phân giác của \(\widehat{ABC}\)(đpcm)