Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: AD=ED(Hai cạnh tương ứng)
a) Xét ΔABD và ΔEBD có
BD là phân giác => góc ABD = góc EBD
BD chung
Góc BAD = góc BED =90o
=> ΔABD = ΔEBD (ch-gn)
=>AD=ED(2 cạnh tương ứng)
b) xét ΔADF và ΔEDC có
Góc DAF= góc DEC=90o
AD=ED (cmt)
Góc ADF=EDC( đối đỉnh)
=>ΔADF = ΔEDC (gcg)
=> AF=EC(2 cạnh tương ứng)
c) ta có ΔABD = ΔEBD (cmt)
=> AB = EB (2 cạnh tương ứng)
=> ΔBAE cân tại B
=> \(\widehat{BAE}=\widehat{BEA}=\)\(\dfrac{180 - \widehat{B}}{2}\)(1)
ta lại có AF=EC (cmt)
=> AB+AF=BE+EC
=> BF=BC
=> ΔBFC cân tại B
=>\(\widehat{BFC}=\widehat{BCF}=\dfrac{180-\widehat{B}}{2}\)(2)
từ (1) và (2) => \(\widehat{BFC}\)=\(\widehat{BAE}\) mà 2 góc ở vị trí đồng vị
=> AE//FC
a: góc ACB=90-50=40 độ
b: Xét ΔBAD va ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó: ΔBAD=ΔBED
c: Xét ΔADM vuông tại A và ΔEDC vuông tạiE có
DA=DE
góc ADM=góc EDC
Do đó: ΔADM=ΔEDC
=>DM=DC
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=9^2+12^2=225\)
=>\(BC=\sqrt{225}=15\left(cm\right)\)
b: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
=>DA=DM
c: Xét ΔDAE vuông tại A và ΔDMC vuông tại M có
DA=DM
\(\widehat{ADE}=\widehat{MDC}\)(hai góc đối đỉnh)
Do đó: ΔDAE=ΔDMC
=>AE=MC
Ta có: ΔBAD=ΔBMD
=>BA=BM
Xét ΔBEC có \(\dfrac{BA}{AE}=\dfrac{BM}{MC}\)
nên AM//EC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔDAM vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADM=góc EDC
=>ΔDAM=ΔDEC
c: Xét ΔBMC có BA/AM=BE/EC
nên AE//MC
tự kẻ hình :
a, xét tam giác CAD và tam giác EAD có : AD chung
góc CAD = góc EAD do AD là phân giác của góc A (Gt)
góc DCA = góc DEA = 90 do ...
=> tam giác CAD = tam giác EAD (ch - gn)
b, xét tam giác KDC và tam giác BDE có : góc KDC = góc BDE (đối đỉnh)
DC = DE do tam giác CAD = tam giác EAD (Câu a)
góc DCK = góc DEB = 90 do...
=> tam giác KDC = tam giác BDE (cgv - gnk)
=> DK = DB (đn)
c, cm theo th c - g - c
a: Xét ΔABD vuông tại B và ΔAID vuông tại I có
AD chung
\(\widehat{BAD}=\widehat{IAD}\)
Do đó: ΔABD=ΔAID
Suy ra: AB=AI
hay ΔABI cân tại A
b: Xét ΔBDM vuông tại B và ΔIDC vuông tại I có
DB=DI
\(\widehat{BDM}=\widehat{IDC}\)
Do đó: ΔBDM=ΔIDC
Suy ra: DM=DC
c: Ta có: ΔBDM=ΔIDC
nên BM=IC
Ta có: AB+BM=AM
AI+IC=AC
mà AB=AI
và BM=IC
nên AM=AC
hay ΔAMC cân tại A
mà \(\widehat{MAC}=60^0\)
nên ΔAMC đều
Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc FBE chung
=>ΔBEF=ΔBAC
=>BF=BC
c: ΔBFC cân tại B
mà BD là phân giác
nên BD vuông góc CF
=>BD//AH
=>AH vuông góc AE
Tự kẻ hình
a) - Vì tam giác ABC vuông tại A (gt)
=> tam giác ABD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác EBD vuông tại E (tc)
- Xét tam giác vuông ABD và tam giác vuông EBD, có:
+ Chung BD
+ góc ABD = góc EBD ( BD là p/giác góc ABC)
=> tam giác vuông ABD = tam giác vuông EBD (cạnh huyền - góc nhọn)
b) - Vì tam giác vuông ABD = tam giác vuông EBD (cmt)
=> AD = ED ( 2 cạnh tương ứng )
- Vì tam giác ABC vuông tại A (gt)
=> tam giác AMD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác ECD vuông tại E (tc)
- Xét tam giác vuông AMD và tam giác vuông ECD, có:
+ AD = ED (cmt)
+ góc ADM = góc EDM (đối đỉnh)
=> tam giác vuông AMD = tam giác vuông ECD (cạnh góc vuông - góc nhọn kề)
=> DM = DC (2 cạnh tương ứng)
c) - Vì tam giác vuông AMD = tam giác vuông ECD (cmt)
=> AM = EC (2 cạnh tương ứng)
- Xét tam giác vuông AMD, có
AD + AM > DM (bất đẳng thức tam giác)
Mà AM = EC (cmt)
=> AD + EC > DM (đpcm)