Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng
a, xét tam giác BMD và tam giác BHD có:
BD cạnh chung
\(\widehat{MBD}\)=\(\widehat{HBD}\)(gt)
=> t.giác BMD=t.giác BHD(CH-GN)
b,xét t.giác NMB và t.giác AHB có:
MB=HB(theo câu a)
\(\widehat{B}\)chung
=> t.giác NMB=t.giác AHB(CGV-GN)
=>\(\widehat{MNB}\)=\(\widehat{HAB}\); NB=AB
xét t.giác DNB và t.giác DAB có:
\(\widehat{DNB}\)=\(\widehat{DAB}\)( cmt)
NB=AB(cmt)
\(\widehat{NBD}\)=\(\widehat{ABD}\)(gt)
=>t.giác DNB=t.giác DAB(g.c.g)
=> DN=DA
=> t.giác ADN cân tại A