K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có 

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó:ΔBEM=ΔCFM

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC
nên AE=AF

mà ME=MF

nên AM là đường trung trực của EF

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(1)

Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung

AB=AC
Do đó: ΔABD=ΔACD

Suy ra: DB=DC

hay D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,D thẳng hàng

28 tháng 3 2019

a, xét tam giác BMD và tam giác BHD có:

            BD cạnh chung

           \(\widehat{MBD}\)=\(\widehat{HBD}\)(gt)

 => t.giác BMD=t.giác BHD(CH-GN)

b,xét t.giác NMB và t.giác AHB có:

             MB=HB(theo câu a)

             \(\widehat{B}\)chung

=> t.giác NMB=t.giác AHB(CGV-GN)

=>\(\widehat{MNB}\)=\(\widehat{HAB}\); NB=AB

xét t.giác DNB và t.giác DAB có:

            \(\widehat{DNB}\)=\(\widehat{DAB}\)( cmt)

             NB=AB(cmt)

             \(\widehat{NBD}\)=\(\widehat{ABD}\)(gt)

=>t.giác DNB=t.giác DAB(g.c.g)

=> DN=DA

=> t.giác ADN cân tại A