Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình vẽ bạn tự vẽ:
a) ΔABC vuông cân tại A ⇒ AB = AC
Có: ∠CAE + ∠BAD = ∠BAC = 90o90o (1)
ΔACE vuông tại E ⇒ ∠ACE + ∠CAE = 90o90o (2)
Từ (1) và (2) ⇒ ∠BAD = ∠ACE
Xét ΔABD và ΔCAE có:
∠ADB = ∠CEA = 90o90o
AB = AC (cmt)
∠BAD = ∠ACE (cmt)
⇒ ΔABD = ΔCAE (CH-GN)
⇒ AD = CE (2 cạnh tương ứng)
b) m chưa làm đc
Giúp câu b theo yêu cầu chủ tus.
Theo câu a thì \(\Delta AEC=\Delta BDA\Rightarrow BD=AE\left(1\right)\)
AM là đường trung tuyến ứng với cạnh huyền nên AM=BM=CM ( 2 ) ( tự chứng minh,trên mạng có đầy )
Tam giác ABC vuông cân nên \(\widehat{ABC}=\widehat{ACB}=45^0\)
Ta có:\(\widehat{MBD}=\widehat{BDA}-\widehat{DAB}-\widehat{ABC}=90^0-45^0-\widehat{DAB}=45^0-\widehat{DAB}\)
Mặt khác \(\widehat{MAE}=\widehat{BAC}-\widehat{MAC}-\widehat{BAE}=90^0-45^0-\widehat{DAB}=45^0-\widehat{DAB}\)
Khi đó \(\widehat{MBD}=\widehat{MAE}\left(3\right)\)
Từ ( 1 );( 2 );( 3 ) suy ra \(\Delta DBM=\Delta EAM\left(c.g.c\right)\Rightarrow EM=DM\left(4\right);\widehat{EMA}=\widehat{BMD}\)
Mà \(\widehat{EMA}+\widehat{EMB}=90^0\Rightarrow\widehat{BMD}+\widehat{EMB}=90^0\Rightarrow\widehat{EMD}=90^0\left(5\right)\)
Từ \(\left(4\right);\left(5\right)\Rightarrow\Delta EMD\) vuông cân tại M
Suy ra \(\widehat{MED}=45^0\Rightarrow\widehat{MEC}=45^0\Rightarrow EM\) là phân giác ( đpcm )
P/S:Bài giải ko thể tránh khỏi sai sót,các bn bỏ qua cho
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
a) Ta có: ^ECN=^ACB (Đối đỉnh). Mà tam giác ABC cân tại A => ^ACB=^ABC => ^ECN=^ABC hay ^ECN=^DBM.
Xét tam giác ECN và tam giác DBM có:
^DMB=^ENC=900
CE=BD => Tam giác ECN=Tam giác DBM (Cạnh huyền góc nhọn)
^ECN=^DBM
=> CN=BM (2 cạnh tương ứng) => CN+MC=BM+MC (Cộng mỗi vế với MC) => MN=BC (đpcm)
Tam giác ECN=Tam giác DBM (cmt) => EN=DM (2 cạnh tương ứng)
DM và EN đều vuông góc với BC => DM//EN => ^MDI=^NEI (So le trong)
Xét tam giác DMI và tam giác ENI có:
^DMI=^ENI=900
DM=EN (cmt) => Tam giác DMI=Tam giác ENI (g.c.g)
^NDI=^NEI
=> DI=EI => I là trung điểm của DE (đpcm)
b) AO là phân giác của ^BAC => ^A1=^A2.
Xét tam giác ABO và tam giác ACO có:
AB=AC
^A1=^A2 => Tam giác ABO=Tam giác ACO (c,g,c)
AO chung
=> ^ABO=^ACO (2 góc tương ứng) (1)
Do tam giác ABC cân tại A và AO là đường phân giác => AO cũng là đương trung trực của tam giác ABC.
=> OB=OC (Tính chất đường trung trực của đoạn thẳng)
Ta có: Điểm O thuộc d, d là trung trực của DE => OD=OE
Xét tam giác DBO và tam giác ECO có:
OB=OC
BD=CE => Tam giác DBO=Tam giác ECO (c.c.c)
OD=OE
=> ^DBO=^ECO (2 góc tương ứng) hay ^ABO=^ECO (2)
Từ (1) và (2) => ^ACO=^ECO. Mà 2 góc này là 2 góc kề bù => ^ACO=^ECO=900
=> OC vuông góc với AE hay OC vuông góc AC (đpcm).
Diện tích toàn phần của khối nhựa hình lập phương là:
10 x 10 x 6 = 600 (cm2)
Cạnh khối gỗ hình lập phương là:
10 : 2 = 5 (cm)
Diện tích toàn phần của khối gỗ hình lập phương là:
5 x 5 x 6 = 150 (cm2)
Diện tích toàn phần của khối nhựa gấp diện tích toàn phần của khối gấp số lần là:
600 : 150 = 4 (lần)
a) AB=4 cm;BD=8cm. góc A > góc C > góc B
b)tam giác ACB = tam giác ACD(c-g-c)
=>CB=CD hoặc góc B + góc D
=> tam giác CBD cân tại C
a: Xét ΔCBD có
CA vừa là trung tuyến, vừa là đường cao
=>ΔCDB cân tại C
b: Xét ΔMDE và ΔMCB có
góc DME=góc CMB
MD=MC
góc MDE=góc MCB
=>ΔMDE=ΔMCB
=>ME=MB và CB=DE
BC+BD=ED+BD>BE