Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé
a/ Ta có \(\widehat{ABC}=\widehat{ACB}=\frac{180-36}{2}=72\)
\(\widehat{ACD}=\widehat{DCB}=\frac{\widehat{ACB}}{2}=\frac{72}{2}=36\)
\(\Rightarrow\Delta ACD\)cân tại D (vì \(\widehat{ACD}=\widehat{DCA}=36\))
\(\Rightarrow DA=DC\left(1\right)\)
Ta lại có \(\widehat{CDB}=\widehat{DAC}+\widehat{ACD}=72\)
\(\Rightarrow\Delta DCB\)cân tại C (vì \(\widehat{CDB}=\widehat{CBD}=72\))
\(\Rightarrow BC=DC\left(2\right)\)
Từ (1) và (2) => DA = DC = BC = 1 (cm)
b/ Ta có
\(KC=BC.\sin\left(72\right)=\sin\left(72\right)\)
\(KB=BC.\cos\left(72\right)=\cos\left(72\right)\)
Vậy \(\Delta BKC\)có B = 72, C = 18, K = 90, KC = sin(72), KB = cos(72), BC = 1
Định lí PYTAGO cho tam giác ABC vuông tại A: \(BC^2=AB^2+AC^2=2AB^2\Rightarrow BC=AB\sqrt{2}\)
Xét tam giác ABC vuông tại A: \(sinB=\frac{AC}{BC}=\frac{AB}{AB\sqrt{2}}=\frac{\sqrt{2}}{2}\)\(cosB=\frac{AB}{BC}=\frac{AB}{AB\sqrt{2}}=\frac{\sqrt{2}}{2}\)
\(tanB=\frac{AC}{AB}=\frac{AB}{AB}=1\), \(cotB=\frac{AB}{AC}=\frac{AB}{AB}=1\)
Vì tam giác ABC vuông cân tại A-->B=450
Vậy \(sin45^0=cos45^0\frac{\sqrt{2}}{2},tan45^0=cot45^0=1\)
,
a/
\(BC=\sqrt{AB^2+AC^2}\) (Pitago)
\(\Rightarrow BC=\sqrt{10^2+15^2}=\sqrt{325}=5\sqrt{13}\)
\(AB^2=HB.BC\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{10^2}{5\sqrt{13}}=\dfrac{20\sqrt{13}}{13}\)
\(HC=BC-HB=5\sqrt{13}-\dfrac{20\sqrt{13}}{13}\)
\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
Bạn tự thay số tính nốt nhé vì số hơi lẻ
b/
Áp dụng tính chất đường phân giác trong tg: đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của hai đoạn thẳng ấy
\(\Rightarrow\dfrac{IA}{IC}=\dfrac{AB}{BC}=\dfrac{10}{5\sqrt{13}}=\dfrac{2\sqrt{13}}{13}\)
Mà \(IA+IC=AC=15\) Từ đó tính được IA và IC
Xét tg vuông ABI có
\(BI=\sqrt{AB^2+IA^2}\) (pitago)
Bạn tự thay số tính nhé
mình ghi lộn đề rồi mấy bạn khỏi giải nha