K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

C A B M D E d

a) Ta có : CE ⊥ d

                BD ⊥ d

\(\Rightarrow\)CE // BD  (ĐPCM)

b) Xét △CEA và △ADB có :

    AC = AB

   \(\widehat{EAC}=\widehat{ABD}\)(cùng phụ với \(\widehat{DAB}\))

\(\Rightarrow\) △CEA = △ADB (cạnh huyền-góc nhọn)

c) Có △CEA = △ADB

\(\Rightarrow\hept{\begin{cases}BD=AE\\CE=AD\end{cases}}\)(Cặp cạnh tương ứng)

\(\Rightarrow\)BD + CE = AE + AD = DE (ĐPCM)

d)  △ABC vuông tại A có AM là trung tuyến

\(\Rightarrow\)AM = BM = CM

\(\Rightarrow\)△ABM cân tại M

Có : \(\widehat{ECA}=\widehat{BAD}\)(△CEA = △ADB)

       \(\widehat{ACB}=\widehat{ABC}\) (△ABC cân tại A)

\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{ABC}\)

Mà \(\widehat{ABC}=\widehat{MAB}\)(△MAC cân tại M)

\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{MAB}\)

\(\Rightarrow\widehat{ECM}=\widehat{MAD}\)

Xét △ADM và △CEM có :

       EC = AD

       \(\widehat{ECM}=\widehat{MAD}\)

       AM = CM

\(\Rightarrow\)△ADM = △CEM (c-g-c)   (ĐPCM)

\(\Rightarrow\)EM = MD   (Cặp cạnh tương ứng) (1)

Có : \(\widehat{EMA}+\widehat{EMC}=90^o\)

       \(\widehat{EMC}=\widehat{DMA}\)(△ADM = △CEM)

\(\Rightarrow\widehat{EMA}+\widehat{DMA}=90^o\)

\(\Rightarrow\widehat{EMD}=90^o\)(2)

Từ (1) và (2) suy ra △DME vuông cân tại M.

mình không biết

a: Xét ΔFCD vuông tại C có CE là đường cao

nên \(FE\cdot FD=FC^2\left(1\right)\)

Xét ΔFCB vuông tại C có CH là đường cao

nên \(FH\cdot FB=FC^2\left(2\right)\)

Từ (1) và (2) suy ra \(FE\cdot FD=FH\cdot FB\)

b: Xét tứ giác CFHE có \(\widehat{CEF}=\widehat{CHF}=90^0\)

nên CFHE là tứ giác nội tiếp

Xét tứ giác ABCH có \(\widehat{CAB}=\widehat{CHB}=90^0\)

nên ABCH là tứ giác nội tiếp

Ta có: \(\widehat{AHB}=\widehat{ACB}\)(ABCH là tứ giác nội tiếp)

\(\widehat{EHC}=\widehat{EFC}\)(CFHE là tứ giác nội tiếp)

mà \(\widehat{ACB}=\widehat{CFD}\left(=90^0-\widehat{CDF}\right)\)

nên \(\widehat{AHB}=\widehat{EHC}\)

Ta có: ABCH là tứ giác nội tiếp

=>\(\widehat{ABH}=\widehat{ECH}\)

Xét ΔABH và ΔECH có

\(\widehat{ABH}=\widehat{ECH}\)

\(\widehat{AHB}=\widehat{EHC}\)

Do đó: ΔABH đồng dạng với ΔECH

30 tháng 10 2017
ΔΔ ADB vuông tại D nên: DBAˆ+DABˆ=900DBA^+DAB^=900 Lại có: EACˆ+DABˆ=1800−BACˆ=1800−900=900EAC^+DAB^=1800−BAC^=1800−900=900 ⇒⇒ DBAˆ=EACˆDBA^=EAC^ (1) ΔΔ ABC cân tại A nên AB = AC Kết hợp với (1) ⇒⇒ ΔADB=ΔCEAΔADB=ΔCEA (cạnh huyền - góc nhọn) ⇒BD=AE,AD=CE⇒BD=AE,AD=CE ⇒BD+CE=AE+AD=DE⇒BD+CE=AE+AD=DE b. ΔΔ AMB và ΔΔ AMC có: AB=ACAB=AC (ΔΔ ABC cân tại A) MB=MCMB=MC (M là trung điểm của BC) AM là cạnh chung ⇒ΔAMB=ΔAMC⇒ΔAMB=ΔAMC (c.c.c) ⇒MABˆ=MACˆ=900:2=450⇒MAB^=MAC^=900:2=450 Mà ΔΔ ABC vuông cân tại A nên: ABMˆ=450⇒MABˆ=ABMˆ=450ABM^=450⇒MAB^=ABM^=450 ⇒⇒ ΔΔ AMB vuông cân tại M ⇒⇒ MA=MBMA=MB Ta lại có: DBAˆ=EACˆ⇒DBAˆ+450=EACˆ+450DBA^=EAC^⇒DBA^+450=EAC^+450 ⇒DBAˆ+MBAˆ=EACˆ+MACˆ⇒MBDˆ=MAEˆ⇒DBA^+MBA^=EAC^+MAC^⇒MBD^=MAE^ Kết hợp với MA=MBMA=MB và BD=AEBD=AE ⇒⇒ ΔBDM=ΔAEMΔBDM=ΔAEM (c.g.c) ⇒BMDˆ=AMEˆ,MD=ME⇒BMD^=AME^,MD=ME (*) Lại có: DMAˆ+BMDˆ=DMAˆ+AMEˆ=900DMA^+BMD^=DMA^+AME^=900 (**) Từ (*) và (**) ta suy ra ΔΔ DME vuông cân tại M.
30 tháng 10 2017

tilado.edu.vn/student/facebook_view_question/code/747142 link đó bạn nào cần

a: Xét ΔAHB và ΔCKA có

góc AHB=góc AKC=90 độ

AB=CA

góc HAB=góc ACK

=>ΔAHB=ΔCKA

b: ΔAHB=ΔCKA

=>AH=CK

Xet ΔHIA và ΔKIC có

IA=IC

AH=CK

góc HAI=góc ICK

=>ΔHIA=ΔKIC

=>IH=IK

c: \(S_{BCKH}=\dfrac{1}{2}\cdot\left(BH+CK\right)\cdot HK\)

\(=\dfrac{1}{2}\cdot HK^2=IM^2< =IA^2\)

Dấu = xảy ra khi M trùng với A

=>d vuông góc AI

28 tháng 12 2018

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD