Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
4 – 1 < CA < 4 + 1
3 < CA < 5
Mà CA là số nguyên
CA = 4 cm.
Vậy CA = 4 cm.
Xét ΔABC có
AC-AB<BC<AB+AC
\(\Leftrightarrow10-5< BC< 10+5\)
\(\Leftrightarrow5< BC< 15\)
\(\Leftrightarrow BC\in\left\{6;7;8;9;10;11;12;13;14\right\}\)
Vậy: BC có thể nhận được 14-6+1=9(giá trị)
Xét ΔABC có
AC-AB<BC<AB+AC
\(\Leftrightarrow7-3< BC< 7+3\)
\(\Leftrightarrow4< BC< 10\)
\(\Leftrightarrow BC\in\left\{5;7\right\}\)
Ta có: AC + AB > BC > AC - AB(bất đẳng thức tam giác)
=>7 + 3 > BC > 7 - 3
10 > BC > 4
Mà độ dài BC là số nguyên tố nên BC\(\in\)(5,7)
Với BC =5 thì \(\Delta ABC\) là tam giác thường
Với BC =7 thì \(\Delta ABC\) là tam giác cân
Gọi các cạnh của tam giác lần lượt là `x,y,z (x,y,z \ne 0)`
Các cạnh của tam giác lần lượt tỉ lệ với `2:4:5`
Nghĩa là: `x/2=y/4=z/5`
Chu vi các cạnh của tam giác là `44 cm`
`-> x+y+z=44`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/4=z/5=(x+y+z)/(2+4+5)=44/11=4`
`=>`\(\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{4}=4\\\dfrac{z}{5}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=4\cdot4=16\\z=4\cdot5=20\end{matrix}\right.\)
Vậy, các cạnh của tam giác lần lượt là `8 cm, 16 cm, 20 cm.`
Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
5 - 3 < BC < 5 + 3
2 < BC < 8
Mà BC là số nguyên
\(\Rightarrow BC \in\) {3;4;5;6;7} cm
Vậy độ dài BC có thể là 3 cm, 4 cm, 5 cm, 6 cm hoặc 7 cm.