K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD
=>ΔABD=ΔAED

=>AB=AE
=>ΔABE cân tại A

b: Xet ΔBDF vuông tại B và ΔEDC vuông tại E có

DB=DE
góc BDF=góc EDC

=>ΔBDF=ΔEDC

=>DF=DC

Xet ΔADF và ΔADC có

AD chung

DF=DC

AF=AC

=>ΔADF=ΔADC

 

23 tháng 2 2022

á hu hu cứukhocroi

23 tháng 2 2022

Cái này trong sách lớp 7 hay là câu hỏi bên ngoài

 

20 tháng 8 2023

a) Để chứng minh tam giác ABD = tam giác ACD, ta cần chứng minh hai tam giác có cạnh và góc bằng nhau. - Biết AB = AC (đề bài). - Ta có DB là đường cao của tam giác ABD và DC là đường cao của tam giác ACD. Theo định nghĩa, đường cao của tam giác là đoạn thẳng kẻ từ các góc vuông góc dưới đến đáy tương ứng. - Vì AB = AC và BD ⊥ AB, CD ⊥ AC nên ta có DB = DC (hai đường cao cùng thuộc tam giác cân). => Tam giác ABD = tam giác ACD (theo nguyên lý tỷ lệ cận). b) Để chứng minh AD là tia phân giác của góc A, ta cần chứng minh rằng góc BAD = góc CAD. - Ta đã chứng minh được tam giác ABD = tam giác ACD (bài a). - Vì hai tam giác cân bằng nhau nên góc BAD = góc CAD (theo tính chất của tam giác cân). => AD là tia phân giác của góc A. c) Để chứng minh AD ⊥ AC, ta cần chứng minh góc ADB + góc ADC = 90°. - Ta đã chứng minh được tam giác ABD = tam giác ACD (bài a). - Vì hai tam giác cân bằng nhau nên góc ADB = góc ADC (theo tính chất của tam giác cân). - Góc ADB + góc ADC = 2 * góc ADB (do góc ADB = góc ADC). - Vì tam giác ABD là tam giác vuông nên góc ADB = 90° / 2 = 45°. - Do đó góc ADB + góc ADC = 45° + 45° = 90°. => AD ⊥ AC (theo tính chất của góc vuông). Vì vậy, ta đã chứng minh a), b), c).

a: Xét ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

=>ΔABD=ΔACD

b: ΔABD=ΔACD

=>góc BAD=góc CAD
=>AD là phân giác của góc BAC

2 tháng 9 2016

Cacs bạn mình chưa học bài tam giác nha

12 tháng 10 2021

chưa học thì thôi bạn ạ