Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác BGC có : \(BM=MG\)
Có : \(CN=NG\left(gt\right)\)
\(\Rightarrow MN\) là đường trung bình tam giác \(BGC\)
\(\Rightarrow MN//BC\) và \(MN=\frac{1}{2}BC\left(1\right)\)
Xét tam giác \(ABC\) có : \(AD=DC\) ( \(BD\) là đường trung tuyến )
\(AE=EB\) ( \(CE\) là đường trung tuyến )
\(\Rightarrow ED\) là đường trung bình tam giác \(ABC\)
\(\Rightarrow ED//BC\) và \(ED=\frac{1}{2}BC\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow ED//MN\) và \(ED=MN\)
Xét tam giác \(BGA\) có : \(BM=MG\) và \(BE=EA\)
\(\Rightarrow ME\) là đường trung bình tam giác \(BGA\)
\(\Rightarrow ME//GA\) và \(ME=\frac{1}{2}GA\left(3\right)\)
Xét tam giác \(CGA\) có : \(CN=NG\) và \(CD=DA\)
\(\Rightarrow DN\) là đường trung bình của tam giác \(CGA\)
\(\Rightarrow DN//GA\) và \(DN=\frac{1}{2}GA\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\Rightarrow ME//DN\) và \(ME=DN\)
Vậy tứ giác \(MNDE\) có các cặp cạnh đối song song và bằng nhau.
Đáp án:
Hình bạn tự vẽ nha!
Giải thích các bước giải:
, Xét tam giác ABC có AE=EB(gt), AD=DC(gt)
=> ED là đường trung bình của tam giác ABC
=> ED//BC và ED = 1/2BC
Xét tam giác BGC có BM=MG(gt), CN=NG(gt)
=> MN là đường trung bình của tam giác BGC
=> MN // BC và MN=1/2BC
Có MN//BC mà ED//BC => MN//ED
MN=1/2BC, ED=1/2BC=> MN=ED
Tứ giác MNDE có: MN//ED,MN=ED
=> MNDE là hình bình hành
A B C D E G M N
BD, CE là đường trung tuyến tam giác ABC
=> AE = BE; AD = CD
=> ED là đường trung tuyến tam giác ABC
=> ED // BC; ED = 1/2 BC (1)
M là trung điểm BG => MG = MB
N là trung điểm CG => NG = NC
suy ra: MN là đường trung bình tam giác GBC
=> MN // BC; MN = 1/2 BC (2)
Từ (1) và (2) => MN // ED ; MN = ED
suy ra: tứ giác MNDE là hình bình hành
=> đpcm