K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

A B D E F P M N Q C O

ĐẶT LẠI ĐIỂM MỘT CHÚT NHÉ

TA CÓ: DE SONG SONG VỚI MQ VÀ DE = 2MQ , BC SONG SONG VỚI MQ VÀ BC = 2 MQ

=> DE SONG SONG VÀ BẰNG BC

=> BE CẮT CD TẠI TRUNG ĐIỂM CỦA MỖI ĐOẠN

CM TƯƠNG TỰ, AF CÁT CD TẠI TRUNG ĐIỂM CỦA MỖI ĐOẠN

=> AF,BE,CD ĐỒNG QUY 

12 tháng 1 2021

Đây là định lý Ceva nhé bạn!

Giả sử AA', BB', CC' đồng quy tại O.

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{A'B}{A'C}=\dfrac{S_{OA'B}}{S_{OA'C}}=\dfrac{S_{AA'B}}{S_{AA'C}}=\dfrac{S_{AA'B}-S_{OA'B}}{S_{AA'C}-S_{OA'C}}=\dfrac{S_{OAB}}{S_{OAC}}\).

Chứng minh tương tự: \(\dfrac{B'C}{B'A}=\dfrac{S_{OBC}}{S_{OBA}};\dfrac{C'A}{C'B}=\dfrac{S_{OAC}}{S_{OBC}}\).

Nhân vế với vế của các đẳng thức trên ta có đpcm.

P/s: Ngoài ra còn có các cách khác như dùng định lý Thales,..)