Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBME vuông tại E và ΔCMF vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)
Do đó: ΔBME=ΔCMF
Suy ra: BE=CF
Xét 2 TG vuông BME và CMF, ta có:
BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)
=>TG BME=TG CMF(cạnh huyền-góc nhọn)
=>BE=CF(2 cạnh tương ứng)
Xét 2 TG vuông BME và CMF, ta có:
BM=CM(M là tđiểm BC); BME=CMF(2 góc đđ)
=>TG BME=TG CMF(cạnh huyền-góc nhọn)
=>BE=CF(2 cạnh tương ứng)
xét tam giác vuông BEC có EM là đường trung tuyến ứng với cạnh huyền
suy ra EM = \(\frac{1}{2}\)BC (1)
xét tam giác vuông CFB có FM là đường trung tuyến ứng với cạnh huyền
suy ra FM = \(\frac{1}{2}\)BC (2)
từ (1) và (2) suy ra M là trung điểm EF
mà M là trung điểm của BC
từ 2 điều đó suy ra BECF là hình bình hành
suy ra BE = CF
`a,`
Ta có: \(\left\{{}\begin{matrix}\text{BE }\bot\text{ Ax}\\\text{CF }\bot\text{ Ax}\end{matrix}\right.\)
`@` Theo tiên đề Euclid
`-> \text {BE // CF}`
`b,`
Xét `2 \Delta` vuông `BEM` và `CFM`:
`\text {MB = MC (M là trung điểm của BC)}`
$\widehat {BME} = \widehat {CMF} (\text {2 góc đối đỉnh})$
`=> \Delta BEM = \Delta CFM (ch-gn)`
`c,`
Vì `\Delta BEM = \Delta CFM (b)`
`-> \text {BE = CF (2 cạnh tương ứng)}`
a:BE vuông góc AM
CF vuông góc AM
=>BE//CF
b: Xet ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
góc BME=góc CMF
=>ΔBEM=ΔCFM
b: ΔBEM=ΔCFM
=>BE=CF
a, C/m ΔBME = ΔCMF
Xét ΔvBME và ΔvCMF. Ta có:
BM = CM (vì M là trung điểm của BC)
∠M1 = ∠M2 (đối đỉnh)
⇒ ΔvBME = ΔvCMF
b, C/m BE = CF
Ta có: ΔBME = ΔCMF (cmt)
⇒ BE = CF (hai cạnh tương ứng)
# chúc bẹn học tốt !!
câu sai nha bạn người ta bảo điều kiện của tam giác abc chứ ko phải thay canh BE với CE nha
Xét tam giác CFM và tam giác BEM có:
CFM = BEM = 900 (gt) vậy hai tam giác là 2 tam giác vuông
MB = MC (gt)
góc M1 = góc M2 (đổi đỉnh)
Vậy tam giác CFM = tam giác BEM (cạnh huyền - góc nhọn)
suy ra BE = CF ( hai cạnh tương ứng của 2 tam giác bằng nhau)
Nếu bạn chưa học trường hợp bằng nhau của tam giác thì có thể suy ra góc EBM = góc FCM vì phụ với góc M2 và góc M1 mà góc M1 = M2 vì đối đỉnh. suy ra 2 tam giác bằng nhau theo trường hợp góc - cạnh - góc nhé
Kí hiệu tam giác là t/g nhé
a) Có: BE _|_ Ax (gt)
CF _|_ Ax (gt)
Suy ra BE // CF (1)
Xét t/g EMB vuông tại E và t/g FMC vuông tại F có:
BM = CM (gt)
EMB = FMC ( đối đỉnh)
Do đó, t/g EMB = t/g FMC ( cạnh huyền và góc nhọn kề)
=> BE = CF (2 cạnh tương ứng) (2)
ME = MF (2 cạnh tương ứng) (3)
(1); (2) và (3) là đpcm
b) Xét t/g EMC và t/g FMB có:
EM = MF (câu a)
EMC = FMB ( đối đỉnh)
CM = BM (gt)
Do đó, t/g EMC = t/g FMB (c.g.c)
=> CE = BF (2 cạnh tương ứng) (4)
ECM = FBM (2 góc tương ứng)
Mà ECM và FBM là 2 góc so le trong
Nên EC // BF (5)
(4) và (5) là đpcm
\(\Delta BEM=\Delta CFM\text{(cạnh huyền - góc nhọn) }\Rightarrow BE=CF\)