K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

A B C E D N M K H

CM : a)Xét t/giác ABC và t/giác ADE

có AB = AD (gt)

  góc EAD = góc BAC (đối đỉnh)

  AC = AE (gt)

=> t/giác ABC = t/giác ADE (c.g.c)

=> ED = BC (hai cạnh tương ứng) (Đpcm)

=> góc E = góc C (hai góc tương ứng)

Mà góc E và góc C ở vị trí so le trong

=> ED // BC (Đpcm)

b) Ta có: t/giác ABC = t/giác ADE (cmt)

=> góc D = góc B (hai góc tương ứng) (1)

Mà góc EDM = góc MDA = góc D/2 (2)

   góc ABN = góc NBC = góc B/2 (3)

Từ (1); (2); (3) => góc EDM = góc NBC

Xét t/giác EMD và t/giác CNB

có ED = BC (cmt)

góc EDM = góc NBC (cmt)

 góc E = góc C (cmt)

=> t/giác EMD = t/giác CNB (g.c.g) (Đpcm)

c) Ta có: t/giác EMD = t/giác CNB (cmt)

=> MD = BN (hai cạnh tương ứng)

Mà MK = KD = MD/2

    BH = HN = BN/2

=> KD = BH 

Từ (1); (2); (3) => góc MDA = góc ABN

Xét t/giác ADK và t/giác ABN

có AD = AB (gt)

 góc MDA = góc ABN (cmt)

 KD = BH (cmt)

=> t/giác ADK = t/giác ABN (c.g.c)

=> góc KAD = góc BAH (hai góc tương ứng)

Do B,A,D là ba điểm thẳng hàng nên góc BAM + góc MAK + góc KAD = 1800

hay góc BAM + góc MAK + góc BAH = 1800

=> ba điểm K, A,H thẳng hàng (Đpcm)

21 tháng 12 2016

                                                  hình bạn tự vẽ và từ ghi giả thiết, kết luận nhé.

                                                                               Giải:  

a) Xét tam giác EDA và tam giác CBA, có:

EA=AC(GT)

BA=AD(GT)

GÓC BAC=GÓC EAD (đối đỉnh)

=> tam giác EDA = tam giác CBA (C-G-C)

=>ED=BC ( 2 CẠNH TƯƠNG ỨNG)

CÓ: tam giác EDA= tam giác CBA, nên:

=> góc DEA=góc ACB( 2 góc tương ứng)

góc DEA=góc ACB( sole trong)

=> ED//BC

b) ............xin lỗi bạn nha. khi nào giải đc mik giải cho nhé =)). k mik nhé, mik chẳng bít đúng hay sai đâu =))

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD và...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

22 tháng 11 2017
Giúp mình gấp
23 tháng 11 2017

Ta co AB = AC  => Tam giác ABC là tam giác cân tại A 

Kẻ AM 

Xét hai tam giác AMB  và tam giác AMC có:

BM =MC ( Vì M là trung điểm của BC)

gÓC B = góc C ( vì ABC là tam giác cân)

AB = BC ( gt)

=> Tam giác ABM = tam giác AMC ( c.g.c)

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)