Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình mình không vẽ nhé bạn.
Diện tích tam giác ABC = 3/2 diện tích tam giác ACE ( Chung chiều cao từ đỉnh A và có đáy BC = 3/2 CE )
=> SABC = 3/5 SABE
Tương tự, SABE = 5/6 SDBE ( Chung chiều cao từ đỉnh E, đáy AB = 5/6 DB )
=> SABC = 3/5 x 5/6 SDBE = 1/2 SDBE => đpcm
bạn vô đây coi bài nào thích hớp thì xem Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE a) Chứng minh rằng HK song song với DE b) Tính HK, biết chu vi tam giác ABC bằng 10 cm Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB... Xem thêm - Tìm với Google
\(a,\) Kẻ đường cao AH
Suy ra AH là đường cao cũng là trung tuyến
Do đó \(BH=HC=\dfrac{1}{2}BC=\dfrac{a}{2}\)
Áp dụng PTG: \(AH=\sqrt{AB^2-BH^2}=\sqrt{a^2-\dfrac{a^2}{4}}=\dfrac{a\sqrt{3}}{2}\)
Vậy \(S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot\dfrac{a\sqrt{3}}{2}\cdot a=\dfrac{a^2\sqrt{3}}{4}\left(đvdt\right)\)
Có \(AD=\frac{1}{5}AB\Rightarrow BD=\frac{6}{5}AB\)
\(CE=\frac{2}{3}BC\Rightarrow BE=\frac{5}{3}BC\)
Có \(S_{ABC}=\sin\widehat{ABC}.AB.AC\) (cái này tự CM lại, ko thì search google)
\(S_{BDE}=\sin\widehat{DBE}.BD.BE=\sin\widehat{DBE}.\frac{6}{5}AB.\frac{5}{3}BC\)
\(\Rightarrow\frac{S_{ABC}}{S_{ABD}}=\frac{\sin\widehat{ABC}.AB.AC}{\sin\widehat{DBE}.\frac{6}{5}AB.\frac{5}{3}BC}=\frac{1}{2}\) (đpcm)