Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối A với D
Sabg=Sbgd(chung đường cao kẻ từ b, ag=gd)
tương tự: Sagk=Skga
=>Sagk+Sagb=Sbgd+Skdg
=>Sabk=SKbd
Skbd=2/5Skbc(chung đường cao kẻ từ K và bd=2/5bc)
=>Sabk=2/5Skbc
=>ak=2/5kc
=>ak=2/7ac
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay \(BC=13cm\)
Vậy: BC=13cm
b) XÉT ΔABE VÀ ΔDBE ,CÓ
BD=BA (B LÀ TRUNG ĐIỂM CỦA AD)
\(\widehat{DBE}=\widehat{ABE}\) =90
EB : CẠNH CHUNG
⇒ΔABE = ΔDBE (C-G-C)
Bạn tự vẽ hình nha.
a, Áp dụng Đ. L. py-ta-go vào tg ABC vuông tại A, có:
BC2=AC2+AB2
=>BC2=122+52
=144+25
=169.
=>BC=13cm.
b, Xét tg ABE và tg DBE, có:
BE chung
góc DBE= góc ABE(=90o)
AB=BD(B là trung điểm của AD)
=>tg DBE= tg ABE(2 cạnh góc vuông)
=>AD=ED(2 cạnh tương ứng)
=>tg ADE là tg cân tại E.
c, Xét tg BDF và tg BKA, có:
góc BDF= góc ABK(2 góc đối đỉnh)
DB=BD(B là trung điểm của AD)
góc DFB= góc BKA(=90o)
=>tg DFB= tg AKB(ch-gn)
=>FB=BK(2 cạnh tương ứng)
=>B là trung điểm của KF.
d, Ta có: góc DBE= góc ABE. Mà 2 tg AEB và tg DEB bằng nhau.
=>EB là tia phân giác của góc DEA.
Vì góc DAC= góc DBE(=90o) và 2 góc này ở vị trí đồng vị, suy ra:
BE // AC.
=>góc DEB= góc ECA( đồng vị)
=> góc BEA= góc EAC(SLT)
Mà góc DEB= góc BEA(BE là tia phân giác của góc DEA)
=>góc EAC= góc ECA.
=>tg AEC là tg cân tại E.
=>AE=EC.
Ta có: DE=EA(2 cạnh tương ứng)
AE=EC(cmt)
=>DE=EC.
=>E là trung điểm của DC(đpcm)
a: BC=căn 5^2+12^2=13cm
b: Xét ΔABE vuông tại B va ΔDBE vuông tại B có
BE chung
BA=BD
=>ΔABE=ΔDBE
=>EA=ED
=>ΔEAD cân tại E
c: Xét ΔBKA vuông tại K và ΔBFD vuông tại F có
BA=BD
góc ABK=góc DBF
=>ΔBKA=ΔBFD
=>BK=BF
=>B là trung điểm của KF
d: góc EAD+góc EAC=90 độ
góc EDA+góc ECA=90 độ
mà góc EAD=góc EDA
nên góc EAC=góc ECA
=>ΔEAC cân tại E
=>EA=EC=ED
=>E là trung điểm của DC
a: BC=13cm
b: Xét ΔABE vuông tại B và ΔDBE vuông tại B có
BA=BD
BE chung
Do đó: ΔABE=ΔDBE
Suy ra: AE=DE
hay ΔAED cân tai E
Bài 5:
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay BC=13(cm)
Vậy: BC=13cm
b) Xét ΔABE vuông tại B và ΔDBE vuông tại B có
EB chung
BA=BD(B là trung điểm của AD)
Do đó: ΔABE=ΔDBE(hai cạnh góc vuông)
Suy ra: EA=ED(Hai cạnh tương ứng)
Xét ΔEAD có EA=ED(cmt)
nên ΔEAD cân tại E(Định nghĩa tam giác cân)
a: BC=13cm
b: Xét ΔABE vuông tại B và ΔDBE vuông tại B có
BE chung
BA=BD
Do đó: ΔABE=ΔDBE
Suy ra: EA=ED
hay ΔEAD cân tại E
c: Xét ΔAKB vuông tại K và ΔDFB vuông tại F có
BA=BD
\(\widehat{ABK}=\widehat{DBF}\)
Do đó: ΔAKB=ΔDFB
Suy ra: BK=BF
hay B là trung điểm của KF
Bằng nhau đó bạn
Đáp án là AK và AC bằng nhau
Mình hôm qua đó