Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TTôi từng nghe:Trong "Principia Mathematica" của Bertrand Russell và Alfred North Whitehead, việc chứng minh 1 + 1 = 2 mất khoảng 362 trang. Đây là một phần của nỗ lực xây dựng toán học dựa trên logic hình thức. Chứng minh này phản ánh sự phức tạp của các định nghĩa và tiên đề trong lý thuyết tập hợp và số học. Nếu bạn cần thêm thông tin về nội dung cụ thể, hãy cho tôi biết! Chứng minh 1 + 1 = 2 trong "Principia Mathematica" được xem là khó khăn vì nó yêu cầu hiểu biết sâu sắc về logic hình thức và các định nghĩa phức tạp. Mặc dù kết quả cuối cùng có vẻ đơn giản, quá trình chứng minh đòi hỏi nhiều bước logic và khái niệm toán học. Nếu bạn không quen với lý thuyết này, nó có thể khá trừu tượng và khó tiếp cận.
Tôi từng nghe:Trong "Principia Mathematica" của Bertrand Russell và Alfred North Whitehead, việc chứng minh 1 + 1 = 2 mất khoảng 362 trang. Đây là một phần của nỗ lực xây dựng toán học dựa trên logic hình thức. Chứng minh này phản ánh sự phức tạp của các định nghĩa và tiên đề trong lý thuyết tập hợp và số học. Nếu bạn cần thêm thông tin về nội dung cụ thể, hãy cho tôi biết! Chứng minh 1 + 1 = 2 trong "Principia Mathematica" được xem là khó khăn vì nó yêu cầu hiểu biết sâu sắc về logic hình thức và các định nghĩa phức tạp. Mặc dù kết quả cuối cùng có vẻ đơn giản, quá trình chứng minh đòi hỏi nhiều bước logic và khái niệm toán học. Nếu bạn không quen với lý thuyết này, nó có thể khá trừu tượng và khó tiếp cận.
Ta có: \(\left\{{}\begin{matrix}BM=MC\left(M\in BC\right)\\AN=NB\left(N\in AB\right)\end{matrix}\right.\left(gt\right)\)
\(\Rightarrow M,N\) lần lượt là các trung điểm của \(BC\) và \(AB\)
\(\Rightarrow AM,CN\) là các đường trung tuyến của \(\Delta ABC\)
Xét \(\Delta ABC\) có:
\(AM,CN\) là các đường trung tuyến
\(AM\cap CN=\left\{O\right\}\)
Do đó: \(O\) là trọng tâm của \(\Delta ABC\) (t/c)
\(\Rightarrow OA=\dfrac{2}{3}AM\) (t/c)
\(\Rightarrow OA=\dfrac{2}{3}\cdot24=16\left(cm\right)\) (vì \(AM=24cm\))
Vậy \(OA=16cm\).
a, tự giải nha
b,
Sabd = 1/2 Sabc(BD = MC=> BD = 1/2 BC, chung chiều cao hạ từ a xuống bc)
diện tích hình abd là:
60 : 2 = 30(cm2)
Sabe= 1/4 Sabc( AE = 1/3 EC=> AE= 1/4 AC, chung chiều cao hạ từ b xuống ac)
diện tích hình abe là:
60:4=15(cm2)
diện tích hình bce là:
60 - 15 = 45(cm2)
còn phần c mk ko bt nha