\(\overrightarrow{AD}=2\overri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 11 2018

\(\overrightarrow{AD}=2\overrightarrow{DB}\Rightarrow\overrightarrow{AD}=\dfrac{2}{3}\overrightarrow{AB}\) ; \(\overrightarrow{CE}=3\overrightarrow{EA}\Rightarrow\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC}\)

Lại có M là trung điểm DE

\(\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{AE}\right)=\dfrac{1}{2}\left(\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{8}\overrightarrow{AC}\)

I là trung điểm BC \(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{MI}=\overrightarrow{MA}+\overrightarrow{AI}=\overrightarrow{AI}-\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{8}\overrightarrow{AC}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)

17 tháng 11 2018

cảm ơn bạn <3

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

a) Vì $M$ là trung điểm của $EF$ nên \(\overrightarrow {ME}+\overrightarrow{MF}=0\), tương tự \(\overrightarrow{NB}+\overrightarrow{NC}=0\)

Từ đkđb ta cũng có \(AE=\frac{1}{3}AB;AF=\frac{3}{5}AC\)

Ý 1:

\(\left\{\begin{matrix} \overrightarrow{AM}=\overrightarrow{AE}+\overrightarrow{EM}\\ \overrightarrow{AM}=\overrightarrow{AF}+\overrightarrow{FM}\end{matrix}\right. \)

\(\Rightarrow 2\overrightarrow{AM}=\overrightarrow{AE}+\overrightarrow{AF}-(\overrightarrow{ME}+\overrightarrow{MF})=\overrightarrow{AE}+\overrightarrow{AF}\)

\(=\frac{1}{3}\overrightarrow{AB}+\frac{3}{5}\overrightarrow{AC}\)\(\Leftrightarrow \overrightarrow{AM}=\frac{1}{6}\overrightarrow{AB}+\frac{3}{10}\overrightarrow{AC}\)

Ý 2:

\(\left\{\begin{matrix} \overrightarrow{MN}=\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{BN}\\ \overrightarrow{MN}=\overrightarrow{MF}+\overrightarrow{FC}+\overrightarrow{CN}\end{matrix}\right.\Rightarrow 2\overrightarrow{MN}=(\overrightarrow{ME}+\overrightarrow{MF})+\overrightarrow{EB}+\overrightarrow{FC}-(\overrightarrow{NB}+\overrightarrow{NC})\)

\(\Leftrightarrow 2\overrightarrow{MN}=\overrightarrow{EB}+\overrightarrow{FC}=\frac{2}{3}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\)

\(\Leftrightarrow \overrightarrow{MN}=\frac{1}{3}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}\)

b)

Theo đkđb ta có: \(\overrightarrow{BG}=3\overrightarrow{CG}\)

\(\left\{\begin{matrix} \overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\\ \overrightarrow{AG}=\overrightarrow{AC}+\overrightarrow{CG}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}\\ 3\overrightarrow{AG}=3\overrightarrow{AC}+3\overrightarrow{CG}\end{matrix}\right.\)

\(\Rightarrow 2\overrightarrow{AG}=3\overrightarrow{AC}-\overrightarrow{AB}\Rightarrow \overrightarrow{AG}=\frac{3}{2}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)

Lại có:

\(\overrightarrow{EG}=\overrightarrow{EA}+\overrightarrow{AG}=\frac{-1}{3}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}=\frac{3}{2}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)

\(\overrightarrow{FG}=\overrightarrow{FA}+\overrightarrow{AG}=\frac{-3}{5}\overrightarrow{AC}+\frac{3}{2}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}=\frac{9}{10}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)

c) Từ phần b ta thấy \(\frac{3}{5}\overrightarrow{EG}=\overrightarrow{FG}\Rightarrow E,G,F\) thẳng hàng.

17 tháng 5 2017

A B C K I
a)
\(\overrightarrow{AK}=\overrightarrow{AI}+\overrightarrow{IK}=\overrightarrow{AI}+\dfrac{1}{2}\overrightarrow{IB}=\overrightarrow{AI}+\dfrac{1}{2}\left(\overrightarrow{IA}+\overrightarrow{AB}\right)\)
\(=\overrightarrow{AI}+\dfrac{1}{2}\overrightarrow{IA}+\dfrac{1}{2}\overrightarrow{AB}\)\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AI}\).
b) Theo câu a:
\(\overrightarrow{AK}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}.\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\).

NV
17 tháng 11 2018

Gọi M là trung điểm AB \(\Rightarrow\overrightarrow{CG}=\dfrac{2}{3}\overrightarrow{CM}\)

\(\overrightarrow{CM}=\dfrac{1}{2}\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\) \(\Rightarrow\overrightarrow{CG}=\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\)

Do I là trung điểm AG:

\(\overrightarrow{CI}=\dfrac{1}{2}\overrightarrow{CG}+\dfrac{1}{2}\overrightarrow{CA}=\dfrac{1}{2}\left(\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\right)+\dfrac{1}{2}\overrightarrow{CA}=\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)

8 tháng 11 2018

1. C

2. C

3. Sửa đề:

\(\overrightarrow{BD}+\overrightarrow{FE}=\overrightarrow{FD}+\overrightarrow{BE}\Leftrightarrow\overrightarrow{BD}-\overrightarrow{BE}=\overrightarrow{FD}-\overrightarrow{FE}\Leftrightarrow\overrightarrow{ED}=\overrightarrow{ED}\) (luôn đúng)