Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADBC có
AD//BC(gt)
AC//BD(gt)
Do đó: ADBC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác ABCN có
E là trung điểm của đường chéo AC(gt)
E là trung điểm của đường chéo BN(B và N đối xứng nhau qua E)
Do đó: ABCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: ABCN là hình bình hành(cmt)
nên AN//BC và AN=BC(Hai cạnh đối trong hình bình hành ABCN)
Ta có: ADBC là hình bình hành(cmt)
nên AD//BC và AD=BC(Hai cạnh đối trong hình bình hành ADBC)
Ta có: AN//BC(cmt)
AD//BC(cmt)
AD và AN có điểm chung là A
Do đó: D,A,N thẳng hàng(1)
Ta có: AD=BC(cmt)
AN=BC(cmt)
Do đó: AD=AN(2)
Từ (1) và (2) suy ra A là trung điểm của DN
hay D và N đối xứng nhau qua A(đpcm)
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
bn tự vẽ hình nha
a,Ta có E đối xứng vs c qua d
-> D là trung điểm EC
Xét tứ giác EBCA có
DB=DA=1/2 AB( D là trung điểm BA-gt)
DE=DC=1/2EC( D là trung điểm EC-cmt)
mà EC cắt BA tại D
-> EBCA là hình bình hành( tứ giác có hai đg chéo cắt nhau tại trung điểm mỗi đg)
-> EB=AC và EB song song AC
b, Ta có HA=AC( H đối C qua A-gt)
mà EB=AC(Cmt), EB song song AC(cmt)
-> HA = EB; HA song song EB
Xét tứ giác EBAH có
HA=EB( cmt)
HA song song EB(cmt)
-> EBHA là hình bình hành( 1 cặp đối song song và bằng nhau)
Ta lại có ,góc BAC +góc BAH= 180 độ( kề bù)
mà góc BAC=90 độ( tam giác ABC vuong tại A-gt)
-> góc BAH= 90 độ
Ta có EBAH là hình bình hành(cmt)
mà góc BAH=90 độ(cmt)
-> EBAH là hcn( Hình bình hành có 1 góc vuông)
a: Xét tứ giác ADHE có
AD//HE
AE//HD
Do đó: ADHE là hình bình hành
b: AE=HD(ADHE là hình bình hành)
DM=DH
Do đó: AE=DM
Xét tứ giác AEDM có
AE//DM
AE=DM
Do đó: AEDM là hình bình hành
c: Đề sai rồi bạn
a: Xét ΔCIA vuông tại A và ΔDIB vuông tại B có
IA=IB
\(\widehat{CIA}=\widehat{DIB}\)
Do đó: ΔCIA=ΔDIB
Suy ra: AC=BD
Bn tự vẽ hình nha
a, Xét tứ giác ABCD có
MA=MC=1/2AC( m là trung điểm AC-gt)
MB=MD=1/2BD(B đối D qua M-gt)
Mà BD cắt AC tại M
-> ABCD là hình bình hành
a) Do B và D đối xứng qua M
\(\Rightarrow\) M là trung điểm BD
Tứ giác ABCD có:
M là trung điểm AC (gt)
M là trung điểm BD (cmt)
\(\Rightarrow\) ABCD là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
b) Do ABCD là hình bình hành
\(\Rightarrow\) AB // CD và AB = CD
\(\Rightarrow\) AN // CD
Do B và N đối xứng nhau qua A
\(\Rightarrow AN=AB\)
Mà AB = CD (cmt)
\(\Rightarrow\) AN = CD
Do AB \(\perp\) AC (\(\Delta ABC\) vuông tại A)
\(\Rightarrow AN\perp AC\)
\(\Rightarrow\widehat{CAN}=90^0\)
Tứ giác ACDN có:
AN // CD (cmt)
AN = CD (cmt)
\(\Rightarrow ACDN\) là hình bình hành
Mà \(\widehat{CAN}=90^0\)
\(\Rightarrow ACDN\) là hình chữ nhật (hình bình hành có một góc vuông)
c) Gọi E là giao điểm của MN và BC
Do AK // MN (gt)
\(\Rightarrow AK\) // ME và AK // NE
\(\Delta BNE\) có
AK // NE
A là trung điểm BN
\(\Rightarrow\) K là trung điểm BE
\(\Rightarrow KB=KE\)
\(\Delta AKC\) có:
AK // ME (cmt)
M là trung điểm AC
\(\Rightarrow\) E là trung điểm CK
\(\Rightarrow\) KC = 2 KE
Mà KB = KE (cmt)
\(\Rightarrow\) KC = 2 KB
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a: Xét tứ giác ACBD có
AC//BD
AD//BC
Do đó: ACBD là hình bình hành
b: Xét tứ giác ABCN có
E là trung điểm của AC
E là trung điểm của BN
Do đó: ABCN là hình bình hành
Suy ra: AN//BC và AN=BC
Ta có: ACBD là hình bình hành
nên AD//BC và AD=BC
Ta có: AN//BC
AD//BC
AN,AD có điểm chung là A
Do đó: D,A,N thẳng hàng
mà AN=AD
nên A là trung điểm của ND
hay N và D đối xứng nhau qua A