Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chứng minh được: ∆BAI:∆ACI (g.g)
A B A C = I B I A ⇒ A B 2 A C 2 = I B 2 I A 2
Mặt khác: I A 2 = I B . I C => ĐPCM
b, Do ∆BAI:∆ACI (g.g)
=> A I C I = B I A I
=> I A I C = I C - 24 I A = 5 7
=> IA = 35cm
=> IC = 49cm
\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)
\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)
Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\) \(\Rightarrow\Delta AHB=\Delta AEB\)
\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến
a) Hai tam giác IAB và ICA đồng dạng với nhau do có góc I chung và \(\widehat{IAB}=\widehat{ICA}\) (Tính chất của góc tạo bởi tia tiếp tuyến và dây cung) ⇔ \(\frac{S_{IAB}}{S_{ICA}}=\frac{AB^2}{AC^2}\)
Đồng thời ta có các tỉ số: \(\frac{IB}{IA}=\frac{IA}{IC}=\frac{AB}{CA}\)
Dễ thấy \(\frac{S_{IAB}}{S_{ICA}}=\frac{IB}{IC}\)
Vậy \(\frac{IB}{IC}=\frac{AB^2}{AC^2}\)
b) Dựa vào (1), ta suy ra: \(\frac{IC-24}{IA}=\frac{IA}{IC}=\frac{20}{28}=\frac{5}{7}\)
⇒ IA = 35 cm; IC = 49 cm; IB = 21 cm.
bn tự kẻ hình nhé:
a) Xét tgiac IAB và tgiac ICA có:
góc I: chung
góc IAB = góc ICA (chắn cung AB)
suy ra: tgiac IAB = tgiac ICA (g.g)
=> IA/IC = IB/IA = AB/AC
=> IA/IC . IB/IA = AB/AC . AB/AC
=> IB/IC = AB^2/AC^2 (đpcm)
b) Theo câu a) ta có:
IA/IC = IB/IA = AB/AC = 5/7
Đặt: IA = 5k thì: IC = 7k; IB = 25/7 k
Ta có: IC - IB = BC
=> \(BC=7k-\frac{25}{7}k=\frac{24}{7}k\)
=> \(24=\frac{24}{7}k\)
=> \(k=7\)
Vậy IA = 5.7 = 35
IC = 7.7 = 49
100-89=?