K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2023

A B C H D E I K

a/ Xét tg vuông ABH và tg vuông ADH có

AH chung

BH=HD (gt)

=> tg ABH = tg ADH (Hai tg vuông có 2 cạnh góc vuông = nhau)

=> AB = AD

b/

Ta có tg ABH = tg ADH \(\Rightarrow\widehat{BAH}=\widehat{DAH}\)

IE//AB \(\Rightarrow\widehat{BAH}=\widehat{DEH}\)

\(\Rightarrow\widehat{DAH}=\widehat{DEH}\) => tg DAE cân tại D => AD = DE

Mà AB = AD (cmt)

=> AB = DE

IE//AB => DE//AB

=> ABED là hình bình hành (Tứ giác có cặp cạnh đối // và bằng nhau là hình bình hành)

=> HA = HE (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

c/

Xét tg vuông ACH và tg vuông ECH có

CH chung

HA=HE (cmt)

=> tg ACH = tg ECH (Hai tg vuông có 2 cạnh góc vuông = nhau)

\(\Rightarrow\widehat{ACH}=\widehat{ECH}\) (1)

IE//AB \(\Rightarrow\widehat{IDC}=\widehat{ABH}\) (góc đồng vị)

\(\widehat{KDC}=\widehat{ADH}\) (góc đối đỉnh)

tg ABH = tg ADH \(\Rightarrow\widehat{ABH}=\widehat{ADH}\)

\(\Rightarrow\widehat{IDC}=\widehat{KDC}\) (2)

Xét tg IDC và tg KDC có DC chung (3)

Từ (1) (2) (3) => tg IDC = tg KDC => DI = DK

d/

Ta có

 tg IDC = tg KDC (cmt) \(\Rightarrow CI=CK\) => tg CIK cân tại C

 tg IDC = tg KDC (cmt) \(\Rightarrow\widehat{ICD}=\widehat{KDC}\) => CD là phân giác \(\widehat{ICK}\)

\(\Rightarrow CD\perp IK\) (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)

\(\Rightarrow IK\perp BC\)

 

 

4 tháng 8 2023

Tham Khảo :

Để chứng minh các điều kiện trên, ta sẽ sử dụng các định lí và quy tắc trong hình học Euclid.

Chứng minh AB = AD:
Ta có AH vuông góc với BC, nên tam giác ABC và tam giác AHD là hai tam giác vuông cân.
Vì BH = HD (theo đề bài), nên ta có AB = AD (vì hai tam giác vuông cân có cạnh góc vuông bằng nhau).
Chứng minh H là trung điểm AE:
Vì BH = HD (theo đề bài), nên ta có AH là đường cao của tam giác ABC.
Do đó, H là trung điểm của cạnh BC (do đường cao chia đôi cạnh đáy).
Chứng minh DI = DK:
Ta có DE || AB (do DE và AB đều song song với BC).
Vì DE || AB và AH là đường cao của tam giác ABC, nên ta có DI/DK = AE/EB (theo định lí đường cao).
Vì H là trung điểm của AE (theo bước 2), nên ta có AE = 2AH.
Từ đó, ta có DI/DK = 2AH/EB.
Vì BH = HD (theo đề bài), nên ta có EB = 2BH.
Từ đó, ta có DI/DK = 2AH/(2BH) = AH/BH = 1.
Vậy, ta có DI = DK.
Chứng minh IK vuông góc với BC:
Ta có DE || AB (do DE và AB đều song song với BC).
Vì IK là đường chéo của tứ giác AIDE, nên ta cần chứng minh tứ giác AIDE là hình bình hành.
Ta đã chứng minh DI = DK (theo bước 3), nên tứ giác AIDE là hình bình hành.
Do đó, ta có IK vuông góc với BC (vì đường chéo của hình bình hành vuông góc với cạnh đáy).
Vậy, các điều kiện đã được chứng minh.

11 tháng 12 2021

\(a,\Delta ABC\) vuông tại A nên \(\widehat{ABC}=90^0-\widehat{ACB}=60^0\)

11 tháng 12 2021

\(b,\left\{{}\begin{matrix}AH\text{ chung}\\\widehat{AHD}=\widehat{AHB}=90^0\\HD=HB\end{matrix}\right.\Rightarrow\Delta AHD=\Delta AHB\left(c.g.c\right)\\ \Rightarrow AD=AB\\ c,DE\text{//}AB\Rightarrow\widehat{HDE}=\widehat{HBA}\left(\text{so le trong}\right)\\ \Rightarrow\widehat{HDE}=\widehat{HDA}\left(\Delta AHD=\Delta AHB\right)\\ \left\{{}\begin{matrix}\widehat{HDE}=\widehat{HBA}\\\widehat{DHE}=\widehat{AHB}\left(\text{đối đỉnh}\right)\\DH=HB\end{matrix}\right.\Rightarrow\Delta BHA=\Delta DHE\left(g.c.g\right)\\ \Rightarrow AB=DE=AD\left(\text{câu b}\right)\\ \left\{{}\begin{matrix}\widehat{HDE}=\widehat{HDA}\\AD=DE\\DH\text{ chung}\end{matrix}\right.\Rightarrow\Delta DHA=\Delta DHE\left(g.c.g\right)\)

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

30 tháng 12 2019

a, Ta có: AH\(\perp\)BD(gt)

         HB=HD(gt)

\(\Rightarrow\)AH là đường trung trực

\(\Rightarrow\)AB=AD (t/c đường trung trực trong tam giác)

b, Xét tam giác AHB và tam giác EHD có:

\(\widehat{AHB}=\widehat{EHD}=90^0\)(gt)

AH=HE(gt)

BH=HD(GT)

\(\Rightarrow\)Tam giác AHB = Tam giác EHD(c-g-c)

\(\Rightarrow\widehat{BHA}=\widehat{DEH}\)(2 góc tương ứng)

mà chúng có vị trí SLT

\(\Rightarrow\)AB//DE

30 tháng 12 2019

A B C K I H E D 1 1

Cm: a) Xét t/giác ABC có AH là đường cao và AH cũng là đường trung tuyến

=> t/giác ABC cân tại A
=> AB = AD 

(có thể xét hai tam giác để giải)

b) Xét t/giác AHB và t/giác EHD

có BH = HD (gt)

 AH = HE (gt)

  \(\widehat{AHB}=\widehat{EHD}=90^0\)(đối đỉnh)

=> t/giác AHB = t/giác EHD (c.g.c)

=> \(\widehat{A_1}=\widehat{E_1}\)(2 góc t/ứng)

mà 2 góc này ở vị trí so le trong

=> AB // ED

c) Xét t/giác ACE có CH là đường cao

CH cũng là đường trung tuyến

=> t/giác ACE cân tại C

=> \(\widehat{EAC}=\widehat{AEC}\)

Xét t/giác DAE có DH là đường cao

DH cũng là đường trung tuyến

 => DAE cân tại D => AD = DE

=> \(\widehat{DAE}=\widehat{DEA}\)

Ta có: \(\widehat{CAE}=\widehat{CAD}+\widehat{DAE}\)

        \(\widehat{CEA}=\widehat{CED}+\widehat{DEA}\)

mà \(\widehat{CAE}=\widehat{AEC}\) (cmt); \(\widehat{DAE}=\widehat{DEA}\)(cmt)

=> \(\widehat{CAD}=\widehat{CED}\)

Xét t/giác ADI và t/giác EDK

có: AD = DE (cmt)

 \(\widehat{IAD}=\widehat{KED}\) (cmt)

 \(\widehat{IDA}=\widehat{KDE}\) (đối đỉnh)

=> t/giác ADI = t/giác EDK (g.c.g)

=> DI = DK (2 cạnh t/ứng)

d) xem lại đề

2 tháng 1 2022

a) Xét tam giác AHB và tam giác AHE có

  BH=HE

  AH chung

  góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)

  => tam giác AHB= tam giác AHE (c.g.c)

  =>HE=HB

b) Xét tam giác AHB và tam giác DHE có

   góc DHE = góc AHB ( đối  đỉnh)

   HE=HB (cmt)

   AH=HD

 => tam giác AHB=tam giác DHE (c.g.c)

 => DE= AB ( 2 cạnh tương ứng)

=> tam giác DHE= tam giác AHE =tam giác AHB

=> AE=DE(2 cạnh tương ứng)

c) Xét tam giác AHC và tam giác DHC có

  HC chung

  góc AHE=góc DHE=90 độ

  AH=HD

 => tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)

=>AC=DC (2 cạnh tương ứng)

Xét tam giác ACE và tam giác DCE có

  AE= DE (cmt)

  AC= DC(cmt)

  CE chung

 => tam giác ACE= tam giác DCE(c.c.c)

 => góc EAC= góc EDC (2 góc tương ứng)

  

2 tháng 1 2022

d)Ta có: C,E,B thẳng hàng

=> góc CEA+ góc AEB= 180 độ

Mà góc CEN và góc AEB là 2 góc đối đỉnh

=>góc AEC+ góc CEN= 180 độ

 => A,E,N thẳng hàng

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BCa)Chứng minh: ∆AHB = ∆AHC ;b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cânc)Chứng minh MN // BC ;d)Chứng minh AH2 + BM2 = AN2 + BH25)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC.a)Chứng minh : ADBDABˆˆ=;b)Chứng minh : AD là phân giác của góc HACc) Chứng minh : AK = AH.6)Cho tam giác cân ABC có AB = AC = 5...
Đọc tiếp

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC

a)Chứng minh: ∆AHB = ∆AHC ;

b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cân

c)Chứng minh MN // BC ;

d)Chứng minh AH2 + BM2 = AN2 + BH2

5)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC

.a)Chứng minh : ADBDABˆˆ=;

b)Chứng minh : AD là phân giác của góc HAC

c) Chứng minh : AK = AH.

6)Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H ∈ BC)

a) Chứng minh : HB = HC và ·CAH = ·BAH

b)Tính độ dài AH ?

c)Kẻ HD vuông góc AB ( D ∈AB), kẻ HE vuông góc với AC(E ∈AC). Chứng minh : DE//BC

7)Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E.

Chứng minh rằng :a) ∆ AFE cân

b) Vẽ đường thẳng Bx // EF, cắt AC tại K. Chứng minh rằng : KF = BE

c) Chứng minh rằng : AE = (AB+AC):2

8) Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .

Chứng minh : a) ΔEDB = Δ EIB ;

b) HB = BF

c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ;

d) DI // HF

9) Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC. Đường thẳng EH và BA cắt nhau tại I .

a)Chứng minh rẳng : ΔABH = ΔEBH ;

b)Chứng minh BH là trung trực của AE

c)Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC

10) Cho ΔABC vuông tại A, M là trung điểm BC, vẽ MH ⊥AB. Trên tia đối tia MH lấy điểm K sao cho MK = MH.

a).CMR: ΔMHB = ΔMKC

b).CMR: AC = HK

c).CH cắt AM tại G, tia BG cắt AC tại I. CMR: I là trung điểm AC

11) Cho ∆ ABC cân tại A. Trên BC lấy D và E sao cho BD = CE ( D và E nằm ngoài tam giác ). Kẻ tia DI ⊥ AB,kẻ tia EK ⊥AC, DI cắt EK tại H.

a) CMR: ∆ ABE = ∆ ACD.

b) CMR: HD = HE.

c)Gọi O là giao điểm của CI và BK ;∆ OED là tam giác gì ? chứng minh.

d) CMR: AO là tia phân giác của góc BAC ?

e) A ,O , H thẳng hàng

12) Cho tam giác ABC cân ở A có AB = AC = 5 cm; kẻ AH ⊥ BC ( H ∈ BC)

a) Chứng minh BH = HC và BAH = CAH

b) Tính độ dài BH biết AH = 4 cm

c) Kẻ HD ⊥ AB ( d ∈ AB), kẻ EH ⊥ AC (E ∈ AC).

d) Tam giác ADE là tam giác gì? Vì sao?

 


 

5
14 tháng 2 2016

nhiều bài quá bạn ơi duyệt đi

phê răng mi viết đc rứa

27 tháng 4 2021

ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

27 tháng 4 2021

mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung

19 tháng 2 2020

a) tam giác ABC có

A=90 độ

C= 20 độ

=> 180 độ - (90+20)= B

B= 180 - 110 = 70

b)xét hai tam giác ABH và ABH có

BH=HD

AH-chung

BHA=DHA=90

=>hai tam giác bằng nhau (c-g-c)

hai câu còn lại mk chịu

chúc bạn hok tốt nhahaha

19 tháng 2 2020

c, DE // AB (Gt)

=> góc EDH = góc ABH (slt)

xét tam giác AHB và tam giác EHD có : HD = HB (gt)

góc AHB = gócDHE (đối đỉnh)

=> tam giác AHB = tam giác EHD (c-g-c)

d, DE // AB

AB _|_ AC

=> DE _|_ AC

AH _|_ AE (gt)

xét tam giác ACE có : ED cắt AH tại D

=> AD _|_ CE (đl)