K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai rồi bạn

31 tháng 7 2023

b

Δ ABD ⊥ tại D có DE là đường cao.

=> \(AD^2=AE.AB\) (hệ thức lượng) (1)

Δ ADC ⊥ tại C có DC là đường cao.

=> \(AD^2=AF.AC\) (hệ thức lượng) (2)

Từ (1), (2) suy ra: \(AE.AB=AF.AC\left(=AD^2\right)\)

Xét Δ AEF và Δ ACB có: 

\(\widehat{EAF}=\widehat{CAB}\) (góc chung)

\(\dfrac{AF}{AE}=\dfrac{AB}{AC}\left(cmt\right)\)

=> Δ AEF đồng dạng Δ ACB (c.g.c)

31 tháng 7 2023

a

Theo hệ thức lượng có: \(DF^2=AF.FC=3,6.6,4=23,04\Rightarrow DF=\sqrt{23,04}=4,8\)

\(AC=AF+FC=3,6+6,4=10\)

\(S_{ADC}=\dfrac{1}{2}AC.DF=\dfrac{1}{2}.10.4,8=24\)

 

b: góc HID+góc HKD=180 độ

=>HIDK nội tiếp

=>góc HIK=góc HDK

=>góc HIK=góc HCB

=>góc HIK=góc HEF

=>EF//IK

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(BE\cdot BA=BH^2\)

hay \(BE=\dfrac{BH^2}{BA}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(CF\cdot CA=CH^2\)

hay \(CF=\dfrac{CH^2}{CA}\)

Ta có: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{CA}\)

\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}\)

\(=\dfrac{AB^4\cdot AC}{AC^4\cdot AC}=\dfrac{AB^3}{AC^3}\)

 

7 tháng 7 2023

Tại sao BH2 bằng với AB4 thế ạ?

 
17 tháng 10 2018

tui ko biết

17 tháng 10 2018

ê ko bt trả lời lm chi

a: Xet (O) có

ΔACD nội tiếp

AD là đường kính

=>ΔACD vuông tại C

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

góc ADC=góc ABH

=>ΔACD đồng dạng với ΔAHB

=>AC/AH=AD/AB và góc CAD=góc HAB

=>AC*AB=AD*AH và góc CAH=góc BAD

b: Xét tứ giác ABHE có

góc AHB=góc AEB=90 độ

=>ABHE là tứ giác nội tiếp

=>góc AHE=góc ABE

=>góc AHE+góc HAC=90 độ

=>HE vuông góc AC

Xét tứ giác AHFC có

góc AHC=góc AFC=90 độ

=>AHFC là tứ giác nội tiếp

=>góc HFA=góc HCA

=>góc HFA+góc BAD=90 độ

=>HF vuông góc AB