Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc ADC=góc AFC=90 độ
=>ADFC nội tiếp
=>góc DFA=góc DCA=góc BCA
=>góc DFA=góc BKA
=>DF//BK
=>DF vuông góc AB
MN//AB
=>MN vuông góc DF
a, \(BC=BH+CH=10\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=6\left(cm\right)\\AC=\sqrt{CH\cdot BC}=8\left(cm\right)\end{matrix}\right.\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}\approx90^0-53^0=37^0\)
b, Vì \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\) nên AMHN là hcn
Do đó \(MN=AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\)
Áp dụng HTL: \(AM\cdot MB=HM^2;AN\cdot NC=HN^2\)
Áp dụng PTG: \(HM^2+HN^2=MN^2=AH^2\)
Vậy \(AM\cdot MB+AN\cdot NC=AH^2\)
a: BC=BH+CH
=3,6+6,4=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=3,6\cdot6,4=23,04\)
=>\(AH=\sqrt{23,04}=4,8\left(cm\right)\)
ΔAHC vuông tại H
=>\(AC^2=AH^2+HC^2\)
=>\(AC^2=4,8^2+6,4^2=64\)
=>AC=8(cm)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}\simeq90^0-53^0=37^0\)
b: Sửa đề; \(AM\cdot MB+AN\cdot NC=MN^2\)
Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
=>AMHN là hình chữ nhật
Xét ΔHAB vuông tại H có HM là đường cao
nên \(AM\cdot MB=HM^2\)
Xét ΔHAC vuông tại H có HN là đường cao
nên \(AN\cdot NC=HN^2\)
\(AM\cdot MB+AN\cdot NC=HM^2+HN^2=MN^2\)
c: AK\(\perp\)MN
=>\(\widehat{ANM}+\widehat{KAC}=90^0\)
mà \(\widehat{ANM}=\widehat{AHM}\)(AMHN là hình chữ nhật)
nên \(\widehat{AHM}+\widehat{KAC}=90^0\)
mà \(\widehat{AHM}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{B}+\widehat{KAC}=90^0\)
mà \(\widehat{B}+\widehat{KCA}=90^0\)
nên \(\widehat{KAC}=\widehat{KCA}\)
=>KA=KC
\(\widehat{KAC}+\widehat{KAB}=90^0\)
\(\widehat{KCA}+\widehat{KBA}=90^0\)
mà \(\widehat{KAC}=\widehat{KCA}\)
nên \(\widehat{KAB}=\widehat{KBA}\)
=>KA=KB
mà KA=KC
nên KB=KC
=>K là trung điểm của BC
a. Để tính AC và BC, ta sử dụng định lý sin trong tam giác vuông: AC = AB * sin(C) = 6 * sin(40°) ≈ 3.86 BC = AB * cos(C) = 6 * cos(40°) ≈ 4.59
b. Gọi M là trung điểm của AC. Ta có BM là đường phân giác của góc B trong tam giác ABC. K là hình chiếu của A lên BM, và E là giao điểm của AH và BM. Theo định lý hình chiếu, ta có: AE = AM * sin(B) = (AC/2) * sin(B) = (3.86/2) * sin(40°) ≈ 1.24 c. Ta cần chứng minh rằng 1/AK² = 1/AB² + 1/AE². Áp dụng định lý Pythagoras trong tam giác AKH, ta có: AK² = AH² + KH² Áp dụng định lý Pythagoras trong tam giác ABH, ta có: AB² = AH² + BH² Áp dụng định lý Pythagoras trong tam giác AEH, ta có: AE² = AH² + EH² Từ đó, ta có: AK² - AB² = (AH² + KH²) - (AH² + BH²) = KH² - BH² Vì BN là đường phân giác của góc B, nên BH = BN/2. Khi đó, ta có: AK² - AB² = KH² - (BN/2)² = KH² - BN²/4 Từ định lý hình chiếu, ta biết rằng KH = AE. Khi đó, ta có: AK² - AB² = AE² - BN²/4 Nhân cả hai vế của phương trình trên với 4, ta có: 4(AK² - AB²) = 4(AE² - BN²/4) Simplifying, ta có: 4AK² - 4AB² = 4AE² - BN² Chia cả hai vế của phương trình trên cho 4AK² * AB², ta có: 1/AK² - 1/AB² = 1/AE² - 1/BN² Từ đó, ta có: 1/AK² = 1/AB² + 1/AE² Vậy phương trình đã được chứng minh. d. Ta cần tính KHI. Vì AK cắt BC tại I, nên ta có: KHI = KBC Vì BN là đường phân giác của góc B, nên ta có: KBC = KBA = KAB
Vậy KHI = KAB.
a: góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
b,c: M ở đâu vậy bạn?
Áp dụng hệ thức lượng trong tam giác vuông ta có : AB^2 = BC . KB => \(AB=\sqrt{BC.KB}=\sqrt{5}.\)( cm )
Tương tự AC = \(2\sqrt{5}\)(cm )
b, Tứ giác AMKN có 3 góc vuông => AMKN là hình chữ nhật => MN = AK ( 2 đường chéo hcn bằng nhau )
=> MN = AK = ( AB . AC ) : BC = 2 ( cm )
b: Xét ΔAKB vuông tại K và ΔAKC vuông tại K có
AB=AC
AK chung
Do đó: ΔAKB=ΔAKC
Suy ra: KB=KC
Xét ΔMBK vuông tại M và ΔNCK vuông tại N có
KB=KC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔMBK=ΔNCK
Suy ra: KM=KN(1)
Xét ΔAKB vuông tại K có KM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot MB=KM^2\left(2\right)\)
Xét ΔAKC vuông tại K có KN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot NC=KN^2\left(3\right)\)
Từ (1), (2) và (3) suy ra \(AM\cdot MB=AN\cdot NC\)