K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

A B C F E H

\(\Delta ABH\) và \(\Delta ABD\) có chung đường cao kẻ từ \(B\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}\) (1)

\(\Delta AHC\) và \(\Delta ADC\) có chung đường cao kẻ từ \(C\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{AHC}}{S_{ADC}}\) (2)

Từ (1) và (2) suy ra 

\(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}=\frac{S_{AHC}}{S_{ADC}}=\frac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\frac{S_{ABH}+S_{ACH}}{S_{ABC}}\) 

( Áp dụng tính chất của dãy tỉ số bằng nhau )

CMTT \(\frac{BH}{BE}=\frac{S_{ABH}+S_{BCH}}{S_{ABC}}\)

\(\frac{CH}{CF}=\frac{S_{ACH}+S_{BCH}}{S_{ABC}}\)

Cộng vế với vế của các bất đẳng thức trên ta được :

\(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=\frac{2\left(S_{ABH}+S_{ACH}+S_{BCH}\right)}{S_{ABC}}=\frac{2S_{ABC}}{S_{ABC}}=2\left(đpcm\right)\)

Chúc bạn học tốt !!!

a: Xét ΔBDA vuông tại D và ΔBFC vuông tại F có

\(\widehat{DBA}\) chung

Do đó: ΔBDA~ΔBFC

=>\(\dfrac{BD}{BF}=\dfrac{BA}{BC}\)

=>\(\dfrac{BD}{BA}=\dfrac{BF}{BC}\)

Xét ΔBDF và ΔBAC có

\(\dfrac{BD}{BA}=\dfrac{BF}{BC}\)

\(\widehat{DBF}\) chung

Do đó: ΔBDF~ΔBAC

Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

\(\widehat{DCA}\) chung

Do đó: ΔCDA~ΔCEB

=>\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)

=>\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)

Xét ΔCDE và ΔCAB có

\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)

\(\widehat{DCE}\) chung

Do đó: ΔCDE~ΔCAB

b: \(BF\cdot BA+CE\cdot CA\)

\(=BD\cdot BC+CD\cdot CB\)

\(=BC\left(BD+CD\right)=BC^2\)

a: Xét ΔDBH vuông tại D và ΔDAC vuông tại D có

góc DBH=góc DAC

=>ΔDBH đồng dạng với ΔDAC

=>DB/DA=DH/DC

=>DB*DC=DA*DH

b: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng với ΔACB