K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2016

trả lời thôi _ khỏi giải cũng được

3 tháng 3 2016

10 hihihi

duyệt đi

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.a) CM: OEFC là hình thangb) CM: OEIC là hình bình hành.c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu...
Đọc tiếp

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!

Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.

a) CM: OEFC là hình thang

b) CM: OEIC là hình bình hành.

c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. 

d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)

 

Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.

a) CM: ADCH là hình chữ nhật.

b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.

c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.

d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)

 

Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.

a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.

b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.

c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)

1
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

13 tháng 11 2019

A B C D E F P Q M I R N H O

a) Chứng minh MNRQ là hình chữ nhật

Áp dụng tính chất đường trung bình:

+)  \(\Delta\)ABC => MN //= \(\frac{1}{2}\)  BC

+)   \(\Delta\)HBC => QR  //= \(\frac{1}{2}\)  BC (1)

=> MN//= QR 

=> MNQR là hình bình hành (2)

Xét \(\Delta\) ACH có NR là đường trung bình => NR //AH => NR //AD  (3)

Từ (1) ; ( 3) và AD vuông góc BC

=> NR vuông góc  RQ (4)

Từ (2) ; (4) => MNQR là hình chữ nhật

b) MPRI là hình bình hành

Áp dụng tính chất đường trung bình

+)    \(\Delta\)ABC => MI //= \(\frac{1}{2}\)  AC

+)   \(\Delta\)AHC => PR //= \(\frac{1}{2}\)  AC

=> MI //= PR

=> MPRI là hình bình hành

Tương tự câu a cũng chứng minh đc MP vuông PR

=> MPRI là hình chữ nhật

b) MNRQ là hình chữ nhật

có O là trung điểm MR 

=> OM =ON =OR = OQ

MPRI là hình chữ nhật

=> OM = OP = OR = OI

=> OM =ON =OR = OQ = OP = OI

=>  Q: M; P; N; N ; R; I thuộc đường tròn tâm O

c) Xét các  \(\Delta\)NEQ ; \(\Delta\) R FM ; \(\Delta\)PDI lần lượt vuông tại E; F; D tương ứng vs các cạnh huyền NQ; RM; PI

Các cạnh huyền đều có trung điểm là O ( câu b )

=> ON = OE = OQ

     OR = OF= OM

    OP= OD = OI

=> D; E; F thuộc đường tròn O.