K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEHF có 

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó: AEHF là tứ giác nội tiép

b: Xét tứ giác ABDE có 

\(\widehat{AEB}=\widehat{ADB}=90^0\)

Do đó:ABDE là tứ giác nội tiếp

8 tháng 3 2022

a) \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\)

\(\rightarrow\) Tứ giác \(AEHF\) nội tiếp đường tròn

b) \(\widehat{AEB}=\widehat{BDA}=90^o\)

\(\rightarrow\) Tứ giác \(ABDE\) nội tiếp đường tròn

 

a: Xét tứ giác BDHF có \(\widehat{BDH}+\widehat{BFH}=90^0+90^0=180^0\)

=>BDHF là tứ giác nội tiếp

Xét tứ giác AFDC có \(\widehat{AFC}=\widehat{ADC}=90^0\)

nên AFDC là tứ giác nội tiếp

Sửa đề; CEHD

Xét tứ giác CEHD có

\(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

=>CEHD là tứ giác nội tiếp

Xét tứ giác ABDE có \(\widehat{AEB}=\widehat{ADB}=90^0\)

nên ABDE là tứ giác nội tiếp

b: Ta có: \(\widehat{FDH}=\widehat{FBH}\)(FBDH là tứ giác nội tiếp)

\(\widehat{EDH}=\widehat{ECH}\)(ECDH là tứ giác nội tiếp)

mà \(\widehat{FBH}=\widehat{ECH}\left(=90^0-\widehat{FAC}\right)\)

nên \(\widehat{FDH}=\widehat{EDH}\)

=>DH là phân giác của góc EDF

Trả lời      (xin lỗi-mk chỉ làm đc câu a)

a) Có góc BFC = góc BEC = 90 độ. ( Vì BE, CF là đường cao của tam giác ABC )
Suy ra F và E thuộc đường tròn đường kính BC.
Hay tứ giác BFEC nội tiếp.

                                                ~Học tốt!~

2 tháng 4 2020

Cảm ơn bạn

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

a) Tứ giác $AFHE$ có tổng 2 góc đối nhau  $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.

b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)

Xét tam giác $ABD$ và $AKC$ có:

$\widehat{ADB}=\widehat{ACK}=90^0$

$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)

$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)

$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$

$\Rightarrow AB.AC=AD.AK$ (đpcm)

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Hình vẽ:

undefined

Câu 8:

a) Xét tứ giác BFEC có 

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1 tháng 4 2021

Nhờ các bạn giúp giải tiếp câu b và c. Thanks

 

9 tháng 5 2021

giúp mình câu b với các bạn ơi

 

12 tháng 4 2016

a, E, F cùng nhìn BC dưới 1 góc 90 => tứ giác BFEC nội tiếp

cmtt F,E cung nhìn AH dưới 1 góc 90 => tứ giác AEHF nội tiếp =>góc EHC = góc BAC ( cùng bù với EHF)

b, Xét tam giác ABE và tam giác CHE có 

   góc BAC = góc EHC 

   góc BEA = góc CEH  = 90

=>tam giác BAE đồng dạng với tam giác CHE(gg) =>AE/HE=BE/CE=> EA.EC=EH.EC

c,cmtt câu a, ta được tứ giác BFHD =>góc ABE = góc FDA

                       tứ giác DHEC nội tiếp =>góc ADE = góc FCA

Lại có góc ABE = góc FCA vì cùng phụ với góc BAC => góc FDA=góc ADE => AD là phân giác của góc FDE 

cmtt =>FC và EB là phân giác của góc DFE và DEF 

=> H là tâm đường tròn nội tiếp tam giác DEF

a: góc AFH+góc AEH=180 độ

=>AEHF nội tiếp

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: BFEC nội tiếp

=>góc IBF=góc IEC

Xét ΔIBF và ΔIEC có

góc IBF=góc IEC

góc I chung

=>ΔIBF đồng dạng với ΔIEC

=>IB/IE=IF/IC

=>IB*IC=IE*IF