K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

a, xét tam giác ABH và tam giác MBH có : BH chung

góc AHB = góc MHB = 90

AH = HM do H là trđ của AM 

=> tam giác ABH = tam giác MBH (2cgv)

b, tam giác ABH = tam giác MBH (câu a)

=> góc ABH  góc MBH (đn)

và AB= BM (đn)

xét tam giác ABC và tam giác  MBC có : BC chung

=> tam giác ABC = tam giác MBC (c-g-c)

=> góc BAC = góc BMC (đn)

c, xét tam giác BIA và tam giác CIN có : 

góc BIA = góc CIN (đối đỉnh)

BI = IC do I là trđ của BC (gt)

AI = IN do I là trđ của AN (gt)

=> tam giác BIA = tam giác CIN (c-g-c)

=> AB = CN (đn)

AB = MB (Câu b)

=> CN = BM 

d, dùng pytago thôi

14 tháng 2 2020

A B H M N C I

a, Xét \(\Delta ABH\) và \(\Delta MBH\) ta có:

\(\widehat{AHB}=\widehat{MHB}=90^o,AH=MH,\)  cạnh chung \(BH\)

\(\Rightarrow\Delta ABH=\Delta MBH\left(c.g.c\right)\) ( ĐPCM )

b, Vì \(\Delta ABH=\Delta MBH\Rightarrow AB=MB\) ( 2 cạnh tương ứng )

\(\widehat{ABH}=\widehat{MBH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{ABC}=\widehat{MBC}\)

Xét \(\Delta ABC\) và \(\Delta MBC\) ta có:

\(AB=MB,\widehat{ABC}=\widehat{MBC},\) cạnh chung \(BC\)

\(\Rightarrow\Delta ABC=\Delta MBC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAC}=\widehat{BMC}\) ( 2 góc tương ứng ) ( ĐPCM )

c, Xét \(\Delta AHI\) và \(\Delta MHI\) ta có:

\(AH=MH,\widehat{AHI}=\widehat{MHI}=90^o,\) cạnh chung \(HI\)

\(\Rightarrow\Delta AHI=\Delta MHI\left(c.g.c\right)\)

\(\Rightarrow AI=MI\) ( cạnh tương ứng ) \(\Rightarrow AI=NI=MI\Rightarrow AI=MI\)

\(\widehat{AIH}=\widehat{MIH}\) ( 2 góc tương ứng ) \(\Rightarrow\widehat{AIB}=\widehat{MIB}\)(1)

Vì \(\widehat{AIH}\) và \(\widehat{CIN}\) là 2 góc đối đỉnh \(\Rightarrow\widehat{AIB}=\widehat{CIN}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{MIB}=\widehat{AIB}=\widehat{CIN}\Rightarrow\widehat{MIB}=\widehat{CIN}\)

Vì I là trung điểm của BC => BI = CI

Xét \(\Delta BIM\) và \(\Delta CIN\) ta có:

\(BI=CI,\widehat{MIB}=\widehat{CIN},MI=NI\)

\(\Rightarrow\Delta BIM=\Delta CIN\left(c.g.c\right)\)

\(\Rightarrow NC=MB\) ( 2 cạnh tương ứng ) ( ĐPCM )

d, Xét tam giác vuông ABH, theo định lý Py-ta-go ta có:

\(AB^2=AH^2+BH^2\Rightarrow13^2=AH^2+12^2\Rightarrow169=AH^2+144\)

\(\Rightarrow AH^2=169-144=25\Rightarrow AH=\sqrt{25}=5\)

Xét tam giác vuông AHC, theo định lý Py-ta-go ta có: 

\(AC^2=AH^2+CH^2\Rightarrow AC^2=5^2+16^2\Rightarrow AC^2=25+256\)

\(\Rightarrow AC^2=281\Rightarrow AC=\sqrt{281}\)

Vì điểm H nằm giữa điểm B và điểm C \(\Rightarrow BC=AH+CH\Rightarrow BC=12+16\Rightarrow BC=28\)

a: Xét ΔAMB và ΔNMC có

MA=MN

góc AMB=góc NMC

MB=MC

Do đó: ΔAMB=ΔNMC

b: Xét ΔBAI có

BH vừa là đường cao, vừa là trung tuyến

nên ΔBAI cân tại B

=>BA=BI=CN

#\(N\)

`a,` Xét Tam giác `AMB` và Tam giác `CME` có:

`AM = ME (g``t)`

\(\widehat{AMB}=\widehat{CME}\) `(2` góc đối đỉnh `)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `CME (c-g-c)`

`b,` Vì Tam giác `AMB =` Tam giác `CME (a)`

`-> AB = CE (2` cạnh tương ứng `)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{BHA}=\widehat{BHD}=90^0\) 

`BH` chung

`=>` Tam giác `ABH =` Tam giác `DBH (c-g-c)`

`=> AB = BD (2` cạnh tương ứng `)`

Mà `AB = CE -> BD = CE`

`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:

`HA = HD (g``t)`

\(\widehat{AHM}=\widehat{DHM}=90^0\)  

`HM` chung

`=>` Tam giác `AMH =` Tam giác `DMH (c-g-c)`

`=> AM = DM (2` cạnh tương ứng `)`

Xét Tam giác `AMD` có: `AM = DM`

`->` Tam giác `AMD` là tam giác cân.

 

loading...

Mình bổ sung thêm hình ạ ._. nãy k sửa kịp á.

27 tháng 12 2021

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

8 tháng 12 2021

a/  Xét △ABM và △DMC có:

\(\begin{matrix}AM=MD\left(gt\right)\\MB=MC\left(gt\right)\\\hat{AMB}=\hat{CMD}\left(đối\text{ }đỉnh\right)\end{matrix}\)

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\) (đpcm).

b/ Ta có: \(\Delta AMB=\Delta DMC\left(cmt\right)\)

\(\Rightarrow\hat{MAB}=\hat{MDC}\); hai góc ở vị trí so le trong.

Vậy: AB // CD (đpcm).

c/ Xét △BAE có:

\(\begin{matrix}BH\perp AE\left(gt\right)\\AH=HE\left(gt\right)\end{matrix}\)

⇒ BH vừa là đường cao, vừa là đường trung tuyến.

⇒ △BAE cân tại B.

\(\Rightarrow BE=BA\). Mà \(AB=CD\left(\Delta AMB=\Delta DMC\right)\)

Vậy: BE = CD (đpcm).

19 tháng 2 2020

Áp dụng đl Pi ta go đảo cho Tam giác ABC

=>AB2+CA2=BC2

=>152+362=392

=>1521=1521

=>Tam giác ABC vuông tại A 

Áp dụng đl pi ta go cho tam giác ABH

=>AB2=AH2+BH2

=>152=92+BH2

=>BH2=225-81=144=122

=>BH=12

Vậy...

19 tháng 2 2020

Chứng minh phần e hộ mik với

26 tháng 12 2021

a: Xét ΔABI và ΔKCI có

IA=IK

\(\widehat{AIB}=\widehat{KIC}\)

IB=IC

Do đó: ΔABI=ΔKCI

26 tháng 12 2021

giup em cau b,c nx dc k a