K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

A B C O P D E F K M N Q

Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Khi đó PK đi qua (O), thật vậy:

Gọi DP,EP,FP cắt đường tròn (K) lần thứ hai lần lượt tại M,N,Q.

Theo hệ thức lượng đường tròn: PA.PD = PB.PE = PC.PF => Tứ giác BCFE nội tiếp

Nên ta có: ^MNQ = ^MNE + ^ENQ = ^MDE + ^EFQ = ^ABP + ^CBP = ^ ABC.

Hoàn toàn tương tự: ^MQN = ^ACB. Từ đó suy ra \(\Delta\)ABC ~ \(\Delta\)MNQ (g.g)

Hai tam giác này có tâm ngoại tiếp tương ứng là O,K nên \(\Delta\)AOC ~ \(\Delta\)MKQ (g.g)

=> \(\frac{OC}{KQ}=\frac{AC}{MQ}\). Bên cạnh đó ^DMQ = ^DFQ = ^CAP nên AC // MQ.

Theo hệ quả ĐL Thales có: \(\frac{AC}{MQ}=\frac{PC}{PQ}\). Từ đây \(\frac{OC}{KQ}=\frac{PC}{PQ}\) (1)

Ta lại có ^OCP = ^ACP - ^OCA = ^MQP - ^KQM = ^KQP (2)

Từ (1) và (2) suy ra \(\Delta\)COP ~ \(\Delta\)QKP (c.g.c) => ^CPO = ^QPK

Mà ba điểm C,P,Q thẳng hàng nên ba điểm O,P,K cũng thẳng hàng. Do vậy PK đi qua O cố định (đpcm).

7 tháng 7 2018

B C O A D d M K E N I H F P d'

1) Xét nửa đường tròn (O) đường kính BC có điểm N thuộc (O) => ^CNB = 900

=> ^CNE = 1800 - ^CNB = 900. Xét tứ giác CDNE có:

^CDE = ^CNE = 900 => Tứ giác CDNE nội tiếp đường tròn (đpcm).

2) Ta có điểm M thuộc nửa đường tròn (O) đường kính BC => ^CMB = 900

=> BM vuông góc CE. Xét \(\Delta\)BEC:

BM vuông góc CE; ED vuông góc BC; BM giao ED tại K => K là trực tâm \(\Delta\)BEC

=> CK vuông góc BE. Mà CN vuông góc BE (Do ^CNB = 900) => 3 điểm C;K;N thẳng hàng (đpcm).

3) Gọi giao điểm của MN với DE là H. Lấy F là trung điểm của EH. BH cắt CF tại điểm P.

Xét tứ giác CMHD: ^CMH = ^CDH = 900 => CMKD nội tiếp đường tròn => ^MCK = ^MDK (1)

Tương tự: ^NBK = ^NDK     (2)

Từ (1) & (2) => ^MDK = ^NDK hay ^MDH = ^FDN

Tương tự: ^DMB = ^NMB => ^DMH = 2.^DMB (3)

Dễ thấy tứ giác BDME nội tiếp đường tròn => ^DMB = ^BED (2 góc nt chắn cung BD)

Hay ^DMB = ^NEF. Xét \(\Delta\)ENH vuông tại N: H là trung điểm EH

=> \(\Delta\)NEF cân tại F. Do ^DFN là góc ngoài \(\Delta\)NEF => ^DFN = 2.^NEF

Mà ^DMB = ^NEF (cmt) => ^DFN = 2.^DMB (4)

Từ (3) & (4) => ^DMH = ^DFN. Xét \(\Delta\)DMH và \(\Delta\)DFN:

^DMH = ^DFN ; ^MDH = ^FDN (cmt) => \(\Delta\)DMH ~ \(\Delta\)DFN (g.g)

=> \(\frac{DM}{DF}=\frac{DH}{DN}\)=> \(DH.DF=DM.DN\)(5)

Dễ chứng minh \(\Delta\)CMD ~ \(\Delta\)NBD => \(\frac{DM}{DB}=\frac{DC}{DN}\Rightarrow DM.DN=DB.DC\)(6)

Từ (5) & (6) => \(DH.DF=DB.DC\)\(\Rightarrow\frac{DH}{DB}=\frac{DC}{DF}\)

\(\Rightarrow\Delta\)CDH ~ \(\Delta\)FDB (c.g.c) => ^DHC = ^DBF. Mà ^DHC + ^DCH = 900

=> ^DBF + ^DCH = 900 => CH vuông góc BF.

Xét \(\Delta\)CFB: FD vuông góc BC; CH vuôn góc BF; H thuộc FD => H là trực tâm \(\Delta\)CFB

=> BH vuông góc CF (tại P). Ta có nửa đg trong (O) đg kính BC và có ^CPB = 900

=> P thuộc nửa đường tròn (O) => Tứ giác CMPB nội tiếp (O)

=> ^BMP = ^BCP (2 góc nt chắn cung BP) Hay ^HMP = ^DCP

Xét tứ giác CPHD: ^CPH = ^CDH = 900 => ^DCP + ^DHP = 1800

=> ^HMP + ^DHP = 1800 hay ^HMP + ^KHP = 1800 => Tứ giác MPHK nội tiếp đg tròn

=> ^KMH = ^KPH (2 góc nt chắn cung KH) hay ^KMN = ^KPB.

Lại có tứ giác EMKN nội tiếp đg tròn => ^KMN = ^KEN => ^KMN = ^KEB

=> ^KPB = ^KEB => Tứ giác BKPE nội tiếp đg tròn. Mà 3 điểm B;K;E cùng thuộc (I)

=> Điểm P cũng thuộc đg tròn (I) => IP=IB => I thuộc trung trực của BP

Mặt khác: OP=OB => O cũng thuộc trung trực của BP => OI là trung trực của BP

=> OI vuông góc BP. Mà CF vuông góc BP (cmt) => OI // CF (7)

I nằm trên trung trực của EK và F là trung điểm EK => IF vuông góc EK => IF vuông góc d

OC vuông góc d => OC // IF (8)

Từ (7) & (8) => Tứ giác COIF là hình bình hành => IF = OC = R (bk của (O))

=> Độ dài của IF không đổi. Mà IF là khoảng cách từ I đến d (Do IF vuông góc d)

=> I nằm trên đường thẳng d' // d và cách d một khoảng bằng bán kính của nửa đường tròn (O)

Vậy điểm I luôn nằm trên d' cố định song song với d và cách d 1 khoảng = bk nửa đg tròn (O) khi M thay đổi.

22 tháng 5 2018
bạn giải ra chưa? giúp mình câu 3 với
20 tháng 7 2019

A B C O D E S F N M I

a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.

Bổ đề chứng minh rất đơn giản, không trình bày ở đây.

Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E

Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE

Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD

Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC

Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).

b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI

Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900

Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)

Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC

Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).

28 tháng 2 2019

A B C O F E K S P D Q M S'

a) Ta sẽ chứng minh SK đi qua điểm O cố định. Thật vậy, gọi OK cắt AP tại S', ta cần chứng minh S' trùng với S.

Ta có: ^CKF + ^BAC = ^CKF + ^CPE = ^CKF + ^CKE = 1800 => 3 điểm E,K,F thẳng hàng

Thấy ^FPE + ^PEF + ^PFE = ^BPC + ^PBK + ^CPK = ^OBP + ^OCP + ^PBK + ^CPK = ^OBK + ^OCK = 1800 

=> Tứ giác BOCK nội tiếp. Mà OB = OC => ^BKO = ^CKO. Lại có: ^DKB = ^AEB = ^PKC

Suy ra: ^BKO - ^DKB = ^CKO - ^PKC => ^AKO = ^OKP

Mặt khác: ^AOK = ^AOB + ^BOK = 2.^ACB + ^BCK = ^ACK + ^ACB = ^BPK + ^APB = ^APK

=> Tứ giác AOPK nội tiếp => ^OAP = ^OKP => ^OAS' = ^OKA (Vì ^AKO = ^OKP)

=> \(\Delta\)OAS' ~ \(\Delta\)OKA (g.g) => OA2 = OS'.OK => OB2 = OS'.OK => \(\Delta\)OS'B ~ \(\Delta\)OBK (c.g.c)

=> ^OS'B = ^OBK. Tương tự: ^OS'C = ^OCK. Do đó: ^OS'B + ^OS'C = ^OBK + ^OCK = 1800 (Vì tứ giác BOCK nội tiếp)

=> 3 điểm B,S',C thẳng hàng => BC cắt AP tại S'. Vậy nên S trùng S' => 3 điểm O,S,K thẳng hàng => ĐPCM.

b) Từ câu a ta có: OD2 = OS.OK => \(\Delta\)ODS ~ \(\Delta\)OKD (c.g.c) => ^ODS = ^OKD = ^OKA = ^OAS

=> Tứ giác AOSD nội tiếp hay 4 điểm A,O,P,S cùng thuộc 1 đường tròn (1)

Ta lại có: ^CAP + ^PAD = ^CAD = ^CBD = ^BMD + ^BDM = ^SMD + ^BDQ = ^SMD + ^BAQ

Mà ^CAP = ^BAQ (gt) nên ^PAD = ^SMD hay ^SMD = ^SAD => 4 điểm A,S,D,M cùng thuộc 1 đường tròn (2)

Từ (1);(2) => 5 điểm A,O,S,P,M cùng thuộc 1 đường tròn. Do OA = OD nên ^AMO = ^DMO hay ^AMO = ^QMO

Xét \(\Delta\)AOQ cân tại O, một điểm M sao cho ^AMO = ^QMO (cmt). Dễ c/m AM = QM (Gợi ý: Lấy đối xứng của M qua OA)

Từ đó: OM là trung trực của AQ => OM vuông góc AQ (đpcm).

25 tháng 9 2018

Ai làm hộ mình với