Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆ABC có M, N lần lượt là trung điểm của AC, AB (gt) nên MN là đường trung bình của tam giác => MN // BC
b) Tứ giác AKCI có hai đường chéo IK và AC cắt nhau tại trung điểm của mỗi đường (AM = MC, IM = MK) nên là hình bình hành
c) ∆ABC có BM và CN là hai đường trung tuyến và P là trung điểm của BC nên AP là đường trung tuyến thứ ba => A, I, P thẳng hàng
Mà A, I, D thẳng hàng nên I, P, D thẳng hàng (đpcm)
d) Tứ giác AKCI là hình bình hành có đường chéo AC là phân giác của góc IAK nên là hình thoi => AC vuông góc IK
Do đó tam giác ABC phải cân tại B (có BM là đường cao cũng là trung tuyến)
Ở câu a từ trung tuyến suy ra được trung điểm luôn ah bạn?
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
a: Xét tứ giác BMNP có
BM//NP
NM//BP
Do đó: BMNP là hình bình hành
Xét ΔABC có
N là trung điểm của CA
NP//AB
Do đó: P là trung điểm của BC
b: Sửa đề; HB//AP
Xét ΔABC có
N là trung điểm của AC
NM//BC
Do đó: M là trung điểm của AB
Xét tứ giác AHBP có
M là trung điểm chung của AB và HP
=>AHBP là hình bình hành