K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có DE//BC

nên AD/AB=DE/BC

=>DE/10=3/5

hay DE=6(cm)

b: Xét ΔADE và ΔCGE có 

\(\widehat{ADE}=\widehat{CGE}\)

\(\widehat{AED}=\widehat{CEG}\)

Do đó: ΔADE\(\sim\)ΔCGE

Suy ra: AD/CG=AE/CE

hay \(AD\cdot CE=AE\cdot CG\)

1 tháng 12 2019

Áp dụng định lý Ta-lét:

Với EF // CD ta có A F A D = A E A C

Với DE // BC ta có  A E A C = A D A B

Suy ra A F A D = A D A B , tức là  A F 6 = 6 9

Vậy AF = 6.6 9  = 4 cm

Đáp án: C

a: Xét ΔABC có DE//BC

nên DE/BC=AD/AB

=>DE/10=3/5

=>DE=6cm

b: Xét ΔADE và ΔCGE có

góc AED=góc CEG

góc EAD=góc ECG

=>ΔADE đồng dạng với ΔCGE

c: Xét tứ giác DBCG có

DG//BC

DB//CG

=>DBCG là hình bình hành

=>DB=CG

a: Xét ΔAEF có 

D là trung điểm của AE

DG//EF

Do đó: G là trung điểm của AF

Suy ra: AG=GF(1)

Xét hình thang BDGC có 

E là trung điểm của DB

EF//DG//BC

Do đó: F là trung điểm của GC

Suy ra: GF=FC(2)

Từ (1) và (2) suy ra AG=GF=FC

b: Xét ΔAFE có 

D là trung điểm của AE

G là trung điểm của AF

Do đó:DG là đường trung bình của ΔAFE

Suy ra: \(DG=\dfrac{EF}{2}\)

hay EF=10cm

Hình thang DGCB có

E là trung điểm của DB

F là trung điểm của GC

Do đó: EF là đường trung bình của hình thang DGCB

Suy ra: \(EF=\dfrac{DG+BC}{2}\)

\(\Leftrightarrow10=\dfrac{5+BC}{2}\)

hay BC=15(cm)

Xét ΔABC có DE//BC

nên \(\dfrac{AD}{AB}=\dfrac{DE}{BC}\)

=>\(\dfrac{DE}{8}=\dfrac{2}{5}\)

=>\(DE=2\cdot\dfrac{8}{5}=\dfrac{16}{5}=3,2\left(cm\right)\)

19 tháng 1 2019

Xin lỗi  mới học lớp 7!***~~~@