Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha !!!
Xét tam giác ABC có DE//BC( vì D thuộc AB, E thuộc AC)
=> AD/AB = AE/AC( hệ quả định lí Ta-let)
=> AD/AB+CE/CA=AE/AC+CE/CA
=(EA+EC)/CA
=CA/CA
=1
Vậy ..................................
Nhớ k mk nha
Xét \(\Delta\text{A}BC\)có :
\(ED//\text{A}C\left(gt\right)\)
\(\Rightarrow\frac{BE}{\text{A}B}=\frac{DE}{\text{A}C}\)
\(\Rightarrow\frac{BE}{ED}=\frac{\text{A}B}{\text{A}C}(1)\)
Có : AD là phân giác góc \(B\text{A}C\)
=> góc \(B\text{A}D\)= góc \(C\text{A}D\)
Có : \(ED//\text{A}C\left(gt\right)\)
=> góc \(\text{A}DE\)= góc \(C\text{A}D\)
mà góc \(B\text{A}D\)= góc \(C\text{A}D\) ( cmt)
=> góc \(\text{A}DE\)= góc \(B\text{A}D\)
=> \(\Delta ED\text{A}\) cân tại E
=> \(ED=E\text{A}\)
Cộng mỗi vế của (1) với 1, ta có :
\(1+\frac{\text{A}B}{\text{A}C}=\frac{BE}{ED}+1\)
=>\(\frac{\text{A}B}{\text{A}B}+\frac{\text{A}B}{\text{A}C}=\frac{BE}{ED}+\frac{ED}{ED}\)
mà \(ED=E\text{A}\left(cmt\right)\)
=>\(\frac{\text{A}B}{\text{A}B}+\frac{\text{A}B}{\text{A}C}=\frac{BE}{ED}+\frac{E\text{A}}{ED}\)
=>\(\frac{\text{A}B}{\text{A}B}+\frac{\text{A}B}{\text{A}C}=\frac{\text{A}B}{ED}\)
=>\(\frac{1}{\text{A}B}+\frac{1}{\text{A}C}=\frac{1}{ED}\)
mà \(ED=E\text{A}\left(cmt\right)\)
=> \(\frac{1}{\text{A}B}+\frac{1}{\text{A}C}=\frac{1}{E\text{A}}\left(đpcm\right)\)
Theo định lí Ta let
\(\frac{AD}{AB}=\frac{AE}{AC}\Rightarrow\frac{AE}{AC}+\frac{CE}{AC}=\frac{AE+CE}{AC}=\frac{AC}{AC}=1\)