Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ đề bài có sai sót: BIC=ABI+ACI+BAC bạn ạ
Hình bạn tự vẽ nhé:
Giải: Nối A với I, kéo dài AI cắt BC tại D
Ta có: BID là góc ngoài của tam giác AIB tại đỉnh I nên theo tính chất góc ngoài của tam giác,ta có
=> BID=BAI+ABI (1)
DIC là góc ngoài của tam giác AIC tại đỉnh I nên theo tính chất góc ngoài của tam giác,ta có
=> DIC=ACI+IAC (2)
Từ (1) và (2) => BID+DIC=BAI+ABI+ACI+IAC
=> BIC=ABI+ACI+BAC (điều phải chứng minh)
Sửa đề: c) Từ C vẽ đường thẳng vuông góc với BC và cắt AC tại D. Chứng minh: AI // BD
Bài giải
a) Xét \(\Delta ABI\) và \(\Delta ACI\) có:
AB = AC (gt)
\(BI=CI\) (\(I\) là trung điểm BC)
\(AI\) là cạnh chung
\(\Rightarrow\Delta ABI=\Delta ACI\) (c-c-c)
b) Do \(\Delta ABI=\Delta ACI\) (cmt)
\(\Rightarrow\widehat{BAI}=\widehat{CAI}\) (hai góc tương ứng)
\(\Rightarrow AI\) là tia phân giác của \(\widehat{BAC}\)
c) Do \(\Delta ABI=\Delta ACI\) (cmt)
\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (hai góc tương ứng)
Mà \(\widehat{AIB}+\widehat{AIC}=180^0\) (kề bù)
\(\Rightarrow\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow AI\perp BC\)
Mà \(BD\perp BC\) (gt)
\(\Rightarrow AI\) // \(BD\) (từ vuông góc đến song song)
a: Xét ΔABI vuông tại B và ΔAHI vuông tại H có
AI chung
\(\widehat{BAI}=\widehat{HAI}\)
Do đó: ΔABI=ΔAHI
b: Ta có: ΔABI=ΔAHI
nên AB=AH
hay ΔABH cân tại A
mà \(\widehat{BAH}=60^0\)
nên ΔABH đều
c: Xét ΔBIK vuông tại B và ΔHIC vuông tại H có
IB=IH
\(\widehat{BIK}=\widehat{HIC}\)
Do đó: ΔBIK=ΔHIC
Suy ra: BK=HC
a. Xét 2 tam giác ABI và ACI:
AI chung
AB = AC(tam giác ABC cân tại A)
IB = IC (I là trung điểm của BC)
=> tam giác ABI = tam giác ACI (c-c-c) (đpcm)
=> BI = CI (2 cạnh tương ứng)
b. HI ⊥ AB => H = 90o
KI ⊥ AC => K = 90o
Xét tam giác HBI và tam giác KCI:
H=K=90o
BI = CI(cma)
B = C (tam giác ABC cân tại A)
=> tam giác HBI = tam giác KCI
c. ta có tam giác HBI = tam giác ACI
=> AIB = AIC (2 góc tương ứng)
Mà 2 góc này ở vị trí kề bù.
=> AIB = AIC= \(\dfrac{180^o}{2}\)= 90o
=> tam giác AIC vuông tại I
Áp dụng định lí Py-ta-go vào tam giác AIC, ta có:
AI2 = AC2 - IC2
= 169 - 144 = 36
=> AI = 6 cm
Bạn có nhớ quy đồng mẫu số ko?
Ta có: BID là góc ngoài của tam giác AIB tại đỉnh I nên theo tính chất góc ngoài của tam giác,ta có
=> BID=BAI+ABI (1)
DIC là góc ngoài của tam giác AIC tại đỉnh I nên theo tính chất góc ngoài của tam giác,ta có
=> DIC=ACI+IAC (2)
Từ (1) và (2) => BID+DIC=BAI+ABI+ACI+IAC
Hình vẽ ở trên thì bạn tự vẽ nhé!