Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C
Chia đoạn thẳng BC thành 3 phần bằng nhau rồi nối chúng tới A (như hình vẽ). Bởi chúng sẽ có chung đáy và chiều cao.
Mình nghĩ là cần kẻ 2 đoạn thẳng còn làm 1 đoạn thì mình chịu
Đề bài thiếu dữ kiện nếu không cho vị trí cuat điểm E hoặc điểm M. Nhìn hình vẽ tôi tạm cho E là điểm giữa của AN
Theo đề bài suy ra \(\frac{AE}{AC}=\frac{1}{4}\) Xét tg ABE và tg ABC có chung đường cao từ B->AC nên
\(\frac{S_{ABE}}{S_{ABC}}=\frac{AE}{AC}=\frac{1}{4}\Rightarrow S_{ABE}=\frac{S_{ABC}}{4}\Rightarrow S_{BCE}=S_{ABC}-S_{ABE}=\frac{3xS_{ABC}}{4}\)
Twd đề bài suy ra \(\frac{EN}{EC}=\frac{1}{3}\) xét tg BEN bà tg BCE có chung đường cao từ B->AC nên
\(\frac{S_{BEN}}{S_{BCE}}=\frac{EN}{EC}=\frac{1}{3}\)
Xét tg BEN và tg BEM có chung đáy BE và đường cao từ N->BE = đường cao từ M->BE nên \(S_{BEN}=S_{BEM}\)
Xét tg BEM và tg BCE có chung đường cao từ E->BC nên
\(\frac{S_{BEM}}{S_{BCE}}=\frac{BM}{BC}=\frac{S_{BEN}}{S_{BCE}}=\frac{1}{3}\Rightarrow S_{BEM}=\frac{S_{BCE}}{3}\)
\(\Rightarrow S_{EMC}=S_{BCE}-S_{BEM}=S_{BCE}-\frac{S_{BCE}}{3}=\frac{2xS_{BCE}}{3}=\frac{2x3xS_{ABC}}{3x4}=\frac{S_{ABC}}{2}\)
\(\Rightarrow S_{AEMB}=S_{ABC}-S_{EMC}=S_{ABC}-\frac{S_{ABC}}{2}=\frac{S_{ABC}}{2}\)
\(\Rightarrow S_{EMC}=S_{AEMB}\)
cho hình tam giác abc. hãy vẽ các cách chia tam giác đó thành 3 hình tam giác có diện tích bằng nhau
kkkkgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
a) Cách vẽ :
Lấy BD=DE=EC= 12BC.
Nối AD và AE.
b) Giải thích:
SABD = SADE = SAEC = 12 SABC
help me