Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức trung điểm:
\(\left\{{}\begin{matrix}x_A+x_B=2x_P=-2\left(1\right)\\x_B+x_C=2x_M=4\left(2\right)\\x_A+x_C=2x_N=4\left(3\right)\end{matrix}\right.\)
Cộng vế: \(2x_A+2x_B+2x_C=8-2=6\Rightarrow x_A+x_B+x_C=3\) (4)
Trừ vế cho vế (4) lần lượt với (1);(2);(3) \(\Rightarrow\left\{{}\begin{matrix}x_C=5\\x_A=-1\\x_B=-1\end{matrix}\right.\)
Tương tự ta có: \(\left\{{}\begin{matrix}y_A+y_B=2y_P=6\\y_B+y_C=2y_M=0\\y_A+y_C=2y_N=4\end{matrix}\right.\) \(\Rightarrow y_A+y_B+y_C=5\)
\(\Rightarrow y_C=-1;y_A=5;y_B=1\)
Vậy \(A\left(-1;5\right);B\left(-1;1\right);C\left(5;-1\right)\)
Em tìm hiểu định lí Menelaus. Hoặc vào h.vn để các bạn giúp nhé!
Tọa độ G là;
\(\left\{{}\begin{matrix}x=\dfrac{4+2+0}{3}=2\\y=\dfrac{0-4-2}{3}=-2\end{matrix}\right.\)
Tọa độ M là:
x=(2+0)/2=1 và y=(-4-2)/2=-3
Tọa độ N là:
x=(4+0)/2=2 và y=(0-2)/2=-1
Tọa độ P là;
x=(4+2)/2=3 và y=(0-4)/2=-2
Tọa độ trọng tâm của tam giác MNP là:
\(\left\{{}\begin{matrix}x=\dfrac{1+2+3}{3}=2\\y=\dfrac{-3-1-2}{3}=-2\end{matrix}\right.\)
=>Tam giác ABC và tam giác MNP có chung trọng tâm
cậu này muốn nói: trong cái tam giác đó M chia AB thành k lần , N chia BC thành k lần ,và P chia CÃ thành k lần . nhưng k#1 có nghĩa là chia các phần từ 2 trở nên .nếu chia một phần thì chắc chắn các cạnh của tam giác vẫn giữ nguyên.