Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)
Cậu tự vẽ hinh nha !
Xét tam giác OAM và tam giác OBM có :
OA = OB (giả thiết)
góc AOM = góc BOM (phân giác) => tam giác OAM = tam giác OBM (c.g.c)
OM là cạnh chung
=> MA = MB (2 cạnh tương ứng)
b) Xét tam giác OAH là tam giác OBH có :
OA = OB (gt)
OH là cạnh chung => tam giác OAH = tam giác OBH (c.g.c)
góc AOM = góc OBM (phân giác ) => OA = OB (2 cạnh tương ứng) (1)
và góc AHO = góc BHO
Vì 2 góc này kề bù và bằng nhau
=> góc AHO = góc BHO = góc AHB / 2 = 180 / 2 = 90 (2)
Từ 1 và 2
=> OM là đường trung trực của AB
c) quá dễ
B A C N M 1 2 3 4
Giải:
a) Xét \(\Delta BAM,\Delta NCM\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)
\(\widehat{M_2}=\widehat{M_4}\) ( đối đỉnh )
\(BM=MC\left(gt\right)\)
\(\Rightarrow\Delta BAM=\Delta NCM\left(c-g-c\right)\)
\(\Rightarrow CN=AB\) ( cạnh t/ứng )
\(\Rightarrow\widehat{BAM}=\widehat{NCM}\) ( cạnh t/ứng )
Mà \(\widehat{BAM}=90^o\Rightarrow\widehat{NCM}=90^o\) hay \(CN\perp AC\)
b) Xét \(\Delta AMN=\Delta CMB\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)
\(\widehat{M_1}=\widehat{M_3}\) ( đối đỉnh )
\(BM=MN\left(gt\right)\)
\(\Rightarrow\Delta AMN=\Delta CMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{BCA}=\widehat{CAN}\) ( cạnh t/ứng )
Mà 2 góc trên nằm ở vị trí so le trong nên AN // BC
Vậy...