Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta AMKvà\Delta BKCcó:\)
KA=KB
góc MKA=góc BKC
KM=KC
\(\Rightarrow\Delta AMK=\Delta BCK\left(c-g-c\right)\)
\(\Rightarrow\)AM=BC (1)
\(\Rightarrow\)MA//BC (góc M so le trong với góc C) (3)
Xét \(\Delta AENvà\Delta BECcó:\)
EA=EC
góc AEN=góc BEC
EN=EB
\(\Rightarrow\Delta AEN=\Delta CEB\left(c-g-c\right)\)
\(\Rightarrow\)NA=BC (2)
\(\Rightarrow\)NA//BC (góc N so le trong với góc C) (4)
Từ (1) và (2) có: M,A,N thẳng hàng
Từ (3) và (4) có: AM=AN
a: Xét tứ giác AMBC có
K là trung điểm của AB
K là trung điểm của MC
Do đó: AMBC là hình bình hành
Suy ra: AM=BC
a: Xét tứ giác AMBC có
K là trung điểm của BA
K là trung điểm của MC
Do đó: AMBC là hình bình hành
Suy ra: AM//BC và AM=BC(1)
hay \(\widehat{AMK}=\widehat{BCK}\)
b: Xét tứ giác ABCN có
E là trung điểm của AC
E là trung điểm của BN
Do đó: ABCN là hình bình hành
Suy ra: NA=BC; NA//BC(2)
c: Từ (1) và (2) suy ra AM=AN và AM//AN
mà AM và AN có điểm chung là A
nên M,A,N thẳng hàng
mà AM=AN
nên A là trung điểm của MN
Sửa lại đề bài: chỗ EN = ED fai là EN = EB ms đúng chứ nhỉ
Ta có hình vẽ:
a) Vì K là trung điểm của AB nên AK = KB
Xét Δ AKM và Δ BKC có:
AK = KB (cmt)
AKM = BKC (đối đỉnh)
KM = KC (gt)
Do đó, Δ AKM = Δ BKC (c.g.c)
=> AM = BC (2 cạnh tương ứng); AMK = BCK (2 góc tương ứng)
Mà AMK và BCK là 2 góc so le trong => AM // BC (đpcm)
b) Vì E là trung điểm của AC nên AE = EC
Xét Δ AEN và Δ CEB có:
AE = CE (cmt)
AEN = CEB (đối đỉnh)
EN = EB (gt)
Do đó, Δ AEN = Δ CEB (c.g.c)
=> AN = BC (2 cạnh tương ứng); ANE = CBE (2 góc tương ứng)
Mà ANE và CBE là 2 góc so le trong => AN // BC (đpcm)
c) Ta có: AM // BC (câu a)
AN // BC (câu b)
Mà theo tiên đề Ơ-clit qua 1 điểm nằm ngoài 1 đường thẳng chỉ vẽ được 1 đường thẳng song song với đường thẳng cho trước nên AM trùng với AN hay 3 điểm A, M, N thẳng hàng
Mặt khác, AM = BC = AN => A là trung điểm của MN (đpcm)
Bài làm
~ Mik nghĩ pk là tia đối của KC mới chứng minh được, Và câu b mik nghĩ đề không đúng đâu, nhìn hình mik vẽ thì chắc bbạn cũnng hiểu. ~
Xét tam giác AKM và tam giác BKC có:
AK = BK (K trung điểm AB)
\(\widehat{AKM}=\widehat{BKC}\)( hai góc đối )
MK = KC ( gt )
=> Tam giác AKM = tam giác BKC ( c.g.c )
=> AM = BC (1)
Xét tam giác AEN và tam giác CEB có:
AE = EC ( E trung điểm AC )
\(\widehat{AEN}=\widehat{CEB}\)( hai góc đối )
EN = EB ( gt )
=> Tam giác AEN = tam giác CEB ( c.g.c )
=> AN = BC (2)
Từ (1) và (2) => AM = AN ( đpcm )
b) ~ Mik nghĩ là chứng minh AM // BC và AN // BC vì theo như hình mik vẽ thì thấy AM và AN cùng // BC. nếu k phải thì nói lại cho mik để mik làm lại cho ~
Vì tam giác AKM = tam giác BKC ( cmt )
=> \(\widehat{AMK}=\widehat{KCB}\)( hai góc tương ứng )
Mà hai góc này vị trí so le trong
=> AM // BC (3)
Vì tam giác AEN = tam giác CEB ( cmt )
=> \(\widehat{ANE}=\widehat{EBC}\)( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong.
=> AN // BC. (4)
c) Từ (3) và (4) => A, M, N thẳng hàng ( Theo tiên đờ Ơ-clit ) ( đpcm )