K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Hình như đề sai???

2 tháng 5 2018

a. Xét tam giác BMC và tam giác DMA có

MB=MD(gt) BMC=DMA(đối đỉnh)

MA=MC(vì M là trung điềm AC)

Vậy tam giác BMC = tam giác DMA(c-g-c)

=>MBC=MDA( 2 góc tương ứng)

=> AD // BC

b. Xét tam giác AMB và tam giác CMD có

MA=MC(vì M là trung điềm AC)

AMB=CMD( đối đỉnh)

MB=MD(gt)

Vậy tam giác AMB = tam giác CMD(c-g-c)

=> AB=CD(2 cạnh tương ứng)

mà AB=AC(vì tam giác ABC cân tại A)

=> AC=CD

=> tam giác ACD cân tại C

c. trong tam giác DEB có M là trung điểm của BD( vì MD=MB)

=> EM là đường trung tuyến thứ nhất (1)

mặt khác AC=CE(gt)

MC=1/2 AC (vì M là trung điềm AC)

=> MC= 1/2 CE 

a: Xét ΔAIM và ΔBIC có

IA=IB

\(\widehat{AIM}=\widehat{BIC}\)

IM=IC

Do đó: ΔAIM=ΔBIC

=>\(\widehat{IAM}=\widehat{IBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AM//BC

ΔIAM=ΔIBC

=>AM=BC

b: Xét ΔEAN và ΔECB có

EA=EC

\(\widehat{AEN}=\widehat{CEB}\)

EN=EB

Do đó: ΔEAN=ΔECB

=>\(\widehat{EAN}=\widehat{ECB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AN//CB

c: ΔEAN=ΔECB

=>AN=CB

AN//CB

AM//CB

AN,AM có điểm chung là A

Do đó: M,A,N thẳng hàng

mà MA=NA

nên A là trung điểm của MN

a: Xét ΔADE và ΔCDB có 

DE=DB

\(\widehat{ADE}=\widehat{CDB}\)

DA=DC

Do đó: ΔADE=ΔCDB

Xét tứ giác ABCE có 

D là trung điểm của AC

D là trung điểm của BE

Do đó:ABCE là hình bình hành

Suy ra: AE//BC

b: ta có: ΔENB vuông tại N

mà ND là đường trung tuyến

nên ND=DB=DE=BE/2

Xét tứ giác ABCM có 

D là trung điểm của đường chéo AC

D là trung điểm của đường chéo BM

Do đó: ABCM là hình bình hành

Suy ra: AM//BC và AM=BC(1)

Xét tứ giác ANBC có 

E là trung điểm của đường chéo AB

E là trung điểm của đường chéo CN

Do đó: ANBC là hình bình hành

Suy ra: AN//BC và AN=BC(2)

Từ (1) và (2) suy ra AM=AN(3)

Ta có: AM//BC

AN//BC

mà AM và AN có điểm chung là A

nên N,A,M thẳng hàng(4)

Từ (3) và (4) suy ra A là trung điểm của NM

11 tháng 5 2022

refer

https://lazi.vn/edu/exercise/1204537/cho-tam-giac-abc-can-tai-a-goi-m-la-trung-diem-cua-ac-tren-tia-doi-cua-tia-mb-lay-diem-d-sao-cho-dmbm

a: Xét ΔBMC và ΔDMA có 

MB=MD

\(\widehat{BMC}=\widehat{DMA}\)

MC=MA

DO đó: ΔBMC=ΔDMA

Xét tứ giác ABCD có

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AD//BC

b: Ta có: DC=AB

mà AB=AC
nên DC=AC

hay ΔCAD cân tại C

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB=DC

29 tháng 11 2016

A B M N C D E

a) xét tam giác ADM và tam giac BDC ta có

MD=DC (gt)

AD=DB(D là trung điểm AB)

góc ADM=góc BDC (2 góc doi đỉnh)

-> tam giác ADM= tam giác BDC (c-g-c)

b) ta có

góc MAD = góc DBC (  tam giác ADM= tam giác BDC )

mà 2 góc nẳm o vị trí soletrong

nên AM//BC

c) 

 xét tam giác AEN và tam giac BEC ta có

EN=EB (gt)

AE=EC(E là trung điểm AC)

góc AEN=góc BEC (2 góc doi đỉnh)

-> tam giác ANE = tam giác CBE (c-g-c)

-> góc NAE = góc BCE (2 góc tương ứng

mà 2 góc nằm o vi trí sole trong

nên AN//BC

ta có 

AN//BC (cmt)

AM//BC (cmb)

-> AM trùng AN

-> A,M,N thẳng hàng

29 tháng 11 2016

*-Bạn tự vẽ hình nhé!*

CM:a) Xét tam giác ADM và tam giác BDC có:

           AD=BD(D là trung điểm của AB)

           Góc ADM=góc BDC(đối đỉnh)

           DM=DC(gt)

   => tgiac ADM = tgiac BDC (c.g.c)

b) =>góc MAD= góc DBC (hai góc tương ứng)

   Mà 2 góc này ở vị trí so le trong

 => AM song song BC                                                                 (1)

c) chứng minh tương tự, ta có: tgiac AEN=tgiac CEB(c.g.c)

=> góc NAE= góc CEB(hai góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> BC song song AN                                                             (2)

Từ (1) và (2)=> MA song song BC; AN song song BC

=> A,M,N thẳng hàng (ơ-clit)

*- cho mk nha!!!-Mơn b *:)*